Biopolym. Cell. 2012; 28(1):39-43.
Structure and Function of Biopolymers
Lipids and pigment-protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. plants under UV-B radiation
1Taran N. Yu., 1Storozhenko V. O., 1Svietlova N. B., 2Topchiy N. M.
  1. Educational and Scientific Center "Institute of Biology",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
  2. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601


Aim. To investigate structural and functional modifications of major components of photosynthetic membranes of endemic antarctic species D. antarctica under UV-B radiation. Methods. For quantitative determination of photosynthetic membrane components we used Arnon’s method (for chlorophylls and carotenoids); separation of carotenoids was carried out by Merzlyak’s method; polar lipids were isolated by Zill and Harmon method in modification of Yakovenko and Mihno; glycolipids separation and identification we carried out by Yamamoto method; and sulfoquinovosyl diacylglycerol content was determined by Kean method. The separation, disintegration and determination of pigment-protein complexes of chloroplasts were carried out by Anderson method. Authenticity of differences between the mean arithmetic values of indices was set after the Student criterion. Differences were considered as reliable at p 0.05. Results. We determined structural and functional changes in lipids, carotenoids and pigment-protein complexes at the photosyntetic apparatus level in D. antarctica plants under UV-B radiation. Conclusions. Adaptation of D. antarctica plants to UV-B radiation is accompanied by a cascade of physiological and biochemical rearrangements at the level of photosynthetic apparatus, manifested as the changes in pigment, lipid and pigment-protein complexes content
Keywords: Deschampsia antarctica, UV-B radiation, photosynthetic apparatus


[1] Alberdi M., Bravo L. A., Gutierrez A., Gidekel M., Corcuera L. J. Ecophysiology of Antarctic vascular plants. Physiol. Plan 2002 115, N 4:479–486.
[2] Lewis-Smith R.. I. The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. Antarctic biology in a global contextn / Eds A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema et al Leiden: Backhuys Publ., 2003:234–239.
[3] Xiong F. S., Mueller E. C., Day T. A. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Am. J. Bot 2000 87, N 5:700–710.
[4] Xiong F.S., Ruhland C.T., Day T.A. Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol. Plant 1999 106, N 3 P. 276–286.
[5] Environmental effects of ozone depletion: 1998 Assessment. UNEP Nairobi, 1998:1–209.
[6] Szollosi E., Veres S., Kanalas P., Olah V., Solti A., Sarvari E., Meszaros I. Effects of UV-B radiation and water stress on chlorophyll fluorescence parameters and activity of xanthophyll cycle in leaves of sessile oak (Quercus petraea) seedlings. Acta Biol. Szegediensis 2008 52, N 1:241–242.
[7] Ambasht N.K., Agrawal M. Influence of supplemental UV-B radiation on photosynthetic characteristics of rice plants. Photosynthetica 1997 34, N 3:401–408.
[8] Day T.A., Ruhland C.T. Grobe C.W., Xiong F. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation in the field. Oecologia 1999 119, N 1:24– 35.
[9] Edge R., McGarvey D. J., Truscott T. G. The carotenoids as antioxidants – a review. J. Photochem. Photobiol. B 1997 41, N 3:189–200.
[10] Gould K.S., McKelvie J, Marckham K.R. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 2002 25, N 10:1261–1269.
[11] Latowski D., Kostecka-Gugala A., Strzalka K. Effect of the temperature on violaxanthin de-epoxidation: Comparison of the in vivo and model systems. Russ. J. Plant Physiol 2003 50, N 2:173–177.
[12] Muller-Moule P., Havaux M., Niyogi K. K. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 2003 133, N 2:748–760.
[13] Palozza P., Krinsky N. L. Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol 1992 213, N 2:403–420.
[14] Kettunen R., Tyystjarvi E., Aro E. M. Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop. Plant Physiol 1996 111, N 4:1183–1190.
[15] Moorthy P., Kathiresan K. Effect of UV-B radiation on photosynthetic reactions in Rhizophora apiculata. Plant Growth Regul 1999 28, N 1:49-54.
[16] Arnon D. Copper Enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 1949 24, N 1 P. 1–15.
[17] Merzlyak M.N. Densimetric determination of carotenoids in plants in thin layers of «Silufol» plates. Nauchnye Doki Vyss Shkoly Biol Nauki. 1978; 1:134–8.
[18] Zile L. P., Harmon E. A. Lipids of photosynthetic tissue. I. Silicic acid chromatography of the lipids from whole leaves and chloroplasts. Biochim. Biophys. Acta 1962 57, N 3:573–583.
[19] Yakovenko GM, Mikhno AI. Method of isolation and separation into classes of lipids of plant leaves and chloroplasts on the silicagel column. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1971; 3(6):651-6.
[20] Yamamoto H. High speed quantitative assay on TLC/HPTLC plates. Instrumental HPTLC New York: Ed. W. Bertch & R. Raser. 1980 367–384p.
[21] Kean E. L. Rapid, sensitive spectrophotometric method for quantitative determination of sulfatides. J. Lipid Res 1968 9, N 3:319–327.
[22] Anderson J. M., Melis A. Localization of different photosystems in separate regions of chloroplast membranes. Proc. Natl Acad. Sci. USA 1983 80, N 3:745–749.
[23] Anderson J. M. P-700 content and polypeptide profile of chlorophyll-protein complexes of spinach and barley thylakoids. Biochim. Biophys. Acta 1980 591, N 1:113–126.
[24] Liu L., Xu S., Woo K.C. Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus. Environ. Exp. Bot 2005 54, N 2:121–130.
[25] Bornman J. F. New trends of photobiology: Target sites of UVB radiation in photosynthesis of higher plants. J. Photochem. Photobiol. B 1989 4, N 2:145–158.
[26] Cogdell R. J., Frank H. A. How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 1987 895, N 2 P. 63–79.
[27] Stroch M., Spunda V., Kurasova I. Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 2004 42, N 3:323–337.
[28] Telfer A., Bishop S.M., Phillips D., Barber J. Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J. Biol. Chem 1994 269, N 18:13244–13253.
[29] Telfer A., De Las Rivas J., Barber J. -Carotene within the isolated photosystem II reaction centre: photooxidation and irreversible bleaching of this chromophore by oxidised P680. Biochim. Biophys. Acta 1991 1060, N 1:106–114.
[30] Telfer A., Dhami S., Bishop S. M., Phillips D., Barber J. -Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry 1994 33, N 48 P. 14469–14474.
[31] Barber J. Molecular basis of the vulnerability of Photosystem II to damage by light. Aust. J. Plant Physiol 1994 22, N 2:201–208.
[32] Minkov I. N., Jahoubjan G. T., Denev I. D., Toneva V. T. Photooxidative stress in higher plants. Handbook of plant and crop stress / Ed. M. Pessarakli New York: Marcl Dekker, 1999 P. 499–525.
[33] Ruban A.V., Berera R., Ilioaia C., van Stokkum I.H.M., Kennis J.T.M., Pascal A. A., van Amerongen H., Rober, B., Horton P., van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007 450, N 7169:575–578.
[34] Strzhalka K., Kostecka-Gugala A., Latovski D. Carotenoids of plants and stress action of environment: the role of modulation of physical properties of membranes by carotenoids. Fiziol. Rast 2003 50, N 2:188–193.
[35] Taran NYu, Okanenko OA, Svietlova NB, Musienko MM. Influence of a high-temperature stress on the glicerolipid content of wheat thylakoids. Dopovidi Nats Akad Nauk Ukrainy. 2000; (1):165-9.
[36] Svetlova NB, Taran NYu, Okanenko OA, Musienko MM. Carotenoids and glycolipids in adaptive response of winter wheat chloroplasts under drought action. Dopovidi Nats Akad Nauk Ukrainy. 2004;(2):192-5.
[37] Pick U., Gounaris K., Weiss M., Barber J. Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim. Biophys. Acta 1985 808, N 3:415–420.
[38] Sakaki T. Photochemical oxidants: toxicity. Responses of plant metabolism to air pollution and global change / Eds L. J. De Kok, I. Stulen Leiden: Backhuys Publ., 1998:117–129.
[39] Taran N. Yu., Okanenko A. A., Kosyk O. I. Plant sulfolipid. II. Mutant study and phosphate deficiency. Biopolym. Cell 2009 25, N 1:3–11.
[40] De Kruijff B., Pilon R., Hof R., van’t Demel R. Lipid-protein interactions in chloroplast protein import Lipids in Photosynthesis: Structure, Function and Genetics Advances in Photosynthesis and Respiration Volume 6, 2004, pp 191-208 –:191–208.
[41] Vijayan P., Routaboul J.-M., Browse J. A genetic approach to investigating membrane lipid structure and photosynthetic function. Lipids in photosynthesis: structure, function and genetics (Advances in photosynthesis and respiration) / Eds P.-A. Siegenthaler, N. Murata Amsterdam: Kluwer Acad. Publ., 1998 Vol. 6:263–285.
[42] Siefermann-Harms D., Ninnerman H., Yamamoto H. Reassembly of solubized chlorophyll-protein complexes in proteolipid particles comparison of monogalactosyldiacylglycerol and two phospholipids. Biochim. Biophys. Acta 1987 892, N 3:303–313
[43] Vass I., Sass L., Spetea C., Bakou A., Granotakis D., Petrouleas V. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 1996 35, N 27:8964–8973.