Biopolym. Cell. 2011; 27(4):285-290.
Structure and Function of Biopolymers
Characterization of new cell line stably expressing CHI3L1 oncogene
1Balynska O. V., 2Baklaushev V. P., 1Areshkov P. O., 1Avdieiev S. S., 1Boyko O. I., 2Chekhonin V. P., 1Kavsan V. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. V. P. Serbsky National Research Centre for Social and Forensic Psychiatry, RUSA Ministry of Health
    23, Kropotkinsky lane, Moscow, Russian Federation, 119991


Aim. To characterize the immortalized 293 cell line after stable transfection with human oncogene (CHI3L1). Methods. 293 cells, stably transfected with pcDNA3.1_CHI3L1, and 293 cells, stably transfected with pcDNA3.1 as a negative control, were used throughout all experiments. The clones of CHI3L1-expressing 293 cells and 293 cells, transfected with pcDNA3.1, were analyzed by immunofluorescence and confocal microscopy. Cell proliferation was measured using MTT assay; analyses of ERK1/2 and AKT activation and their cellular localization were performed with anti-phospho-ERK and anti-phospho-AKT antibodies. Specific activation of MAP and PI3 kinases was measured by densitometric analysis of Western-blot signals. Results. The obtained results show quite modest ability of CHI3L1 to stimulate cell growth and reflect rather an improved cellular plating efficiency of the 293 cells stably transfected with pcDNA3.1_CHI3L1 as compared to the 293 cells transfected with an «empty» vector. ERK1/2 and AKT are activated in the 293_CHI3L1 cells. In these cells phosphorylated ERK1/2 were localized in both cell cytoplasm and nuclei while AKT only in cytoplasm. The 293_CHI3L1 cells differed from the 293 cells, transfected with an «empty» vector, in their size and ability to adhere to the culture plates. Conclusions. The overexpression of CHI3L1 is likely to have an important role in tumorigenesis via a mechanism which involves activation of PI3K and ERK1/2 pathways. The tumors which can be induced by orthotopic implantation of the transformed human cells with overexpressed human oncogene CHI3L1 into the rat brain can be used as a target for anticancer drug development.
Keywords: chitinase 3-like 1 protein (CHI3L1), brain tumor, MAP kinase, PI3 kinase


[1] Hakala B. E., White C., Recklies A. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family J. Biol. Chem 1993 268, N 34 P. 25803–25810.
[2] Rehli M., Krause S. W., Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation Genomics 1997 43, N 2 P. 221– 225.
[3] Funkhouser J. D., Aronson N. N. Jr. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family BMC Evol. Biol 2007 7 P. 96.
[4] Johansen J. S., Williamson M. K., Rice J. S., Price P. A. Identification of proteins secreted by human osteoblastic cells in culture J. Bone Miner. Res 1992 7, N 5 P. 501–512.
[5] Shackelton L. M., Mann D. M., Millis A. J. Identification of a 38kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling J. Biol. Chem 1995 270, N 22 P. 13076–13083.
[6] Morrison B. W., Leder P. neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors Oncogene 1994 9, N 12 P. 3417– 3426.
[7] Harvey S., Weisman M., O'Dell J., Scott T., Krusemeier M., Visor J., Swindlehurst C. Chondrex: new marker of joint disease Clin. Chem 1998 44, N 3 P. 509–516.
[8] Houston D. R., Recklies A. D., Krupa J. C., van Aalten D. M. F. Structure and ligand-induced conformational change of the 39kDa glycoprotein from human articular chondrocytes J. Biol. Chem 2003 278, N 32 P. 30206–30212.
[9] Fusetti F., Pijning T., Kalk K. H., Bos E., Dijkstra B. W. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39 J. Biol. Chem 2003 278, N 39 P. 37753–37760.
[10] Horbinski G., Wang G., Wiley C. A. YKL-40 is directly produced by tumor cells and is inversely linked to EGFR in glioblastomas Int. J. Clin. Exp. Pathol 2010 3, N 3 P. 226–237.
[11] Johansen J. S. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer Dan. Med. Bull 2006 53, N 2 P. 172–209.
[12] Junker N., Johansen J. S., Hansen L. T., Lund E. L., Kristjansen P. E. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells Cancer Sci 2005 96, N 3 P. 183–190.
[13] Garifulin O. M., Shostak K. O., Dmitrenko V. V., Rozumenko V. D., Khomenko O. V., Zozulya Yu. A., Zehetner G., Kavsan V. M. The genes SOX-2 and HC gp-39 are overexpressed in astrocytic gliomas Biopolym. Cell 2002 18, N 4 P. 324–329.
[14] Malinda K. M., Ponce L., Kleinman H. K., Shackelton L. M., Millis A. J. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells Exp. Cell Res 1999 250, N 1 P. 168– 173.
[15] Saidi A., Javerzat S., Bellahce'ne A., De Vos J., Bello L., Castronovo V., Deprez M., Loiseau H., Bikfalvi A., Hagedorn M. Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma Int. J. Cancer 2008 122, N 10 P. 2187–2198.
[16] Nishikawa K. C., Millis A. J. gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells Exp. Cell Res 2003 287, N 1 P. 79–87.
[17] Tanwar M. K., Gilbert M. R., Holland E. C. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma Cancer Res 2002 62, N 15 P. 4364–4368.
[18] Shostak K., Labunskyy V., Dmitrenko V., Malisheva T., Shamayev M., Rozumenko V., Zozulya Y., Zehetner G., Kavsan V. HC gp-39 gene is upregulated in glioblastomas Cancer Lett 2003 198, N 2 P. 203–210.
[19] Noushmehr H., Weisenberger D. J., Diefes K., Phillips H. S., Pujara K., Berman B. P., Pan F., Pelloski C. E., Sulman E. P., Bhat K. P., Verhaak R. G., Hoadley K. A., Hayes D. N., Perou C. M., Schmidt H. K., Ding L., Wilson R. K., Phillips H. S., Pujara K., Berman B. P., Pan F., Pelloski C. E., Sulman E. P., Bhat K. P., Verhaak R. G., Hoadley K. A., Hayes D. N., Perou C. M., Schmidt H. K., Ding L., Wilson R. K., Van Den Berg D., Shen H., Bengtsson H., Neuvial P., Cope L. M., Buckley J., Herman J. G., Baylin S. B., Laird P. W., Aldape K; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma Cancer Cell 2010 17, N 5 P. 510–522.
[20] Shao R., Hamel K., Petersen L., Cao Q. J., Arenas R. B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis Oncogene 2009 28, N 50 P. 4456–4468.
[21] Raman M., Chen W., Cobb M. H. Differential regulation and properties of MAPKs Oncogene 2007 26, N 22 P. 3100–3112.
[22] Manning B. D., Cantley L. C. AKT/PKB signaling: navigating downstream Cell 2007 129, N 7 P. 1261–1274.
[23] Datta S. R., Brunet A., Greenberg M. E. Cellular survival: a play in three Akts Genes Dev 1999 13, N 22 P. 2905–2927.
[24] Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 1999 96, N 6 P. 857– 868.
[25] Louis N., Evelegh C., Graham F. L. Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line Virology 1997 233, N 2 P. 423– 429.
[26] Shaw G., Morse S., Ararat M., Graham F. L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells FASEB J 2002 16, N 8 P. 869–871.
[27] Dmytrenko V., Kavsan V., Boyko O., Rymar V., Stepanenko O., Balynska O., Malysheva T., Rozumentko V., Zozulya Y. Expression of genes belonging to the IGF-system in glial tumors Cytology and Genetics 2011 45, N 5 P. 41–57.