Biopolym. Cell. 2008; 24(5):399-405.
Cell Biology
Choice of conditions of human bone marrow stromal cells seeding into polymer macroporus sponges
1Petrenko Yu. A., 1Volkova N. A., 1Zhulikova E. P., 2Damshkaln L. G., 2Lozinsky V. I., 2Petrenko A. Yu.
  1. Institute for Problems of Cryobiology and Cryomedicine, NAS of Ukraine
    23, Pereyaslavskaya Str., Kharkiv, Ukraine, 61015
  2. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
    28, Vavilova Str., Moscow, Russian Federation, 119991


Different conditions of seeding human bone marrow stromal cells (SC) into polymer sponges based on macroporous agarose cryogel (MACS) were investigated. Three methods of cell seeding to MACS were used: co-incubation with permanent stirring, intensive shaking and creation of negative pressure. The results obtained show considerable potential of macroporous agarose cryogel sponges as a three-dimensional carrier for cultivating stromal cells at different methods of cell seeding.
Keywords: tissue engineering, bone marrow stromal cells, macroporous sponges, agarose cryogel, seeding, Alamar Blue


[1] Dang S., Gerecht-Nir S., Chen J., Itskovitz-Eldor J., Zandstra P. Controlled, scalable embryonic stem cell differentiation culture Stem Cells 2004 22:275–282.
[2] Akselband Y., Moen P., Jr., McGrath P. Isolation of rare isotype switch variants in hybridoma cell lines using an agarose gel microdrop-based protein secretion assay Assay Drug Develop. Technol 2003 1:619–626.
[3] Pat. RF number 2220987 2001. Polymer composition for producing macroporous agarose gel and method for its preparation. V. I. Lozinskiy, L. G. Damshkaln, F. M. Pliyeva, I. YU. Galayev, B. Mattiasson BI. 1, 2004.
[4] Lozinsky V I, "Cryogels on the basis of natural and synthetic polymers: preparation, properties and application", RUSS CHEM REV, 2002, 71 (6), 489–511.
[5] Pittenger M., Mackay A., Beck S., Jaiswal R., Douglas R., Mosca J., Moorman M., Simonetti D., Craig S., Marshak D. Multilineage potential of adult human mesenchymal stem cells Science 1999 284:143–147.
[6] Petrenko A. YU., Mazur S. P., Petrenko YU. A., Skorobogatova N. G., Gorokhova N. A., Volkova N. A. Volkova. Isolation and multilinear differentiation of stromal cells from fetal tissue and adult. Transplantation. 2007; 9(1):218-220.
[7] Stosich M., Mao J. Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery Plast. Reconstr. Surg 2007 119:71–83.
[8] Hong L., Peptan I., Clark P., Mao J. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge Ann.Biomed. Eng 2005 33:511–517.
[9] Wang Y., Kim U., Blasioli D., Kim H. Kaplan D. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells Biomaterials 2005 26:7082–7094.
[10] Takahashi Y., Yamamoto M., Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and -tricalcium phosphate Biomaterials 2005 26:3587–3596.
[11] Choi Y., Park S., Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres Biomaterials 2005 26:5855–5863.
[12] Latsinik NV, Grosheva AG, Narovlyansky AN Pavlenko RG, Friedenstein AY. Clonal nature of fibroblast colonies formed by cells of bone marrow stromal cultures. Bull. Exper. Biology and Medicine, 1987; 3:257-284.
[13] Bloch K., Lozinsky V. I., Galaev I. Yu., Yavriyanz K., Vorobeychik M., Azarov D., Damshkaln L., Mattiasson B., Vardi P., Vardi P. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges J. Biomed. Mater. Res 2005 75A;802–809.
[14] Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating K., Prokop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy 2006 8:315–317.
[15] Lozinsky V. I., Damshkaln L. G., Bloch K. O., Vardi P., Grinberg N. V., Burova T. V., Grinberg V. Y. Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as 3D-scaffolds for culturing insulin-producing cell aggregates J. Appl. Polym. Sci 2008 108:3046– 3062.
[16] Petrenko Yu. A., Gorokhova N. A., Tkachova E. N., Petrenko A. Yu. The reduction of Alamar Blue by peripheral blood lymphocytes and isolated mitochondria. Ukr Biokhim Zh. 2005;77(5):100-5.
[17] Gloeckner H., Jonuleit T., Lemke H. D. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue J. Immunol. Meth 2001 252:131–138.