Biopolym. Cell. 2008; 24(5):385-392.
Structure and Function of Biopolymers
Study on interaction of Thermus thermophilus prolyl-tRNA synthetase with gomologous tRNACGGPro by methods of chemical modification in solution
1Egorova S. P., 1Krikliviy I. A., 1Kovalenko O. P., 1Yaremchuk A. D., 1Tukalo M. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Two isoaccepting Thermus thermophilus HB8 tRNAPro were isolated by the chromatography methods with purity about 95 and 97 % . The primary structures of isoaccepting tRNAGGGPro and tRNACGGPro were studied by the gel-sequencing method, and differences between them were found in 18 positions. Our results show that in solution the gomologous prolyl-tRNA synthetase protects the phosphates allocated in D-stem (9, 10, 13), 5'-end of anticodon-stem (26–29), anticodon-loop (34, 35, 37–39) and acceptor-stem (67, 68) of tRNACGGPro from alkylation by ethylnitrosourea.
Keywords: prolyl-tRNA synthetase, tRNAPro, Thermus thermophilus, chromatography, autoradiography, ethylnitrosourea

References

[1] Beuning P. J., Musier-Forsyth K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase Proc. Nat. Acad. Sci. USA 2000 97:8916–8920.
[2] Ahel I., Stathopoulos C., Amborogelly A., Sauerwald A., Toogood H., Hartsch T., Soll D. Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases J. Biol. Chem 2002 277:34743–34748.
[3] Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs Nature 1990 347:203–206.
[4] Cusack S., Berthet-Colominas C., Hartlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-rey analysis of Escherihia coli seryl-tRNA synthetase at 2.5 A Nature 1990 347:249–255.
[5] Arnez J. G., Harris D. C., Mitschler A., Rees B., Franclyn C. S., Moras D. Crystal structure of histidyl-tRNA synthetase from E. coli complex with histidyl-adenylate. EMBO J. 1995;14(17):4143-55.
[6] Aberg A., Yaremchuk A., Tukalo M., Rasmussen B., Cusack S. Crystall structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase Biochemistry 1997 36:3084–3094.
[7] Logan DT, Mazauric MH, Kern D, Moras D. Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus. EMBO J 1995 14:4156–4167.
[8] Woese C. R., Olsen G. J., Ibba M., Soll D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev. 2000;64(1):202-36.
[9] Yaremchuk A., Cusack S., Tukalo M. Crystal structure of a eukaryote/archaeon-like prolyl-tRNA synthetase and its complex with RNA(Pro)(CGG) EMBO J 2000 19 P. 4745–4758.
[10] Cusack S., Yaremchuk A., Krikliviy I., Tukalo M. tRNAPro antikodon recognition by Thermus thermophilus prolyl-tRNA synthetase Structure 1998 6:101–108.
[11] Liu H., Peterson R., Kessler J., Musier-Forsith K. Molecular recognition of tRNAPro by E. coli proline tRNA synthetase in vitro Nucl. Acids Res 1995 23:165–169.
[12] Krikliviy I. A., Kovalenko O. P., Gudzera O. Y., Yaremchuk A. D., Tukalo M. A. Isolation and purification isoaccepting tRNA1Ser and tRNA2Ser from Thermus thermophilus. Biopolym. Cell. 2006; 22(6):425-432
[13] Yaremchuk A., Cusack S., Tukalo M. Crystallization and preliminary X-ray diffraction analysis of Thermus thermophilus prolyl-tRNA synthetase. Acta Crystallogr D Biol Crystallogr. 2000;56(Pt 2):195-6.
[14] Gudzera O. I., Krikliviy I. A., Yaremchuk A. D., Tukalo M. A. The isolation of histidine tRNA from Thermus thermophilus and the study of its primary structure and interaction sites with homologous aminoacyl-tRNA synthetase. Biopolym. Cell. 2006; 22(3):201-209
[15] Krikliviy I. A., Kovalenko O. P., Gudzera O. Y., Yaremchuk A. D., Tukalo M. A. Isolation and purification of Thermus thermophilus tRNALys and determination of its modified nucleotides. Biopolym. Cell. 2008; 24(1):21-27
[16] Bruce A. G., Uhlenbeck O. S. Reactions at the termini of the tRNA with T4 RNA ligase Nucl. Acids Res 1978 5 P. 3665– 3677.
[17] Silberklang M., Gillum A. M., Raj Bhandary U. L. The use nuclease P1 in sequence analysis of end group labeled tRNA Nucl. Acids Res 1977 4:4091–4108.
[18] Rether B., Bonnet J., Ebel J. P. Studies on tRNA nucleotidyltransferase from baker's yeast 1. Purification of the enzyme. Protection against thermal inactivation and inhibition by several substrates Eur. J. Biochem 1974 50:281–288.
[19] Vlasov V. V., Giege R., Ebel J. P. Tertiary structure of tRNA in solution monitore phosphodiester modification with ethylnitrosoures Eur. J. Biochem 1981 119:51–59.
[20] Peattie D. A. Direct chemical method for sequencing RNA Proc. Nat. Acad. Sci. USA 1979 76:1760–1764.
[21] Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanosines and pyrimidines in RNA Nucl. Acids Res 1977 4:2527–2538.
[22] Lockard R. E., Alzner-Debveerd B., Heckman J. E., Mac-Gee J., Tabor M. W., Raj Bhandary U.L. Sequence analysis of 5' {32P} labeled mRNA and tRNA using polyacrylamide gel electrophoresis Nucl. Acids Res 1978 5:37–56.
[23] Vlasov V. V., Korn D.,Giege P. Ebel J.-P. Protection of phosphodiester bonds in yeast tRNAVal by its cognate aminoacyl-tRNA synthetase against alkilation by ethylnitrosourea FEBS Lett 1981 123:277–281.
[24] Crepin T., Yaremchuk A., Tukalo M., Cusack S. Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain Structure 2006 14:1511–1525.