Biopolym. Cell. 2008; 24(5):377-384.
Structure and Function of Biopolymers
Production of Scots pine recombinant defensin 1 and its antifungal activity
1Kovalyova V. A., 1Gout R. T., 2Gout I. T.
  1. National Forestry University of Ukraine
    103, General Chuprynky, Lviv, Ukraine, 79057
  2. University College London
    Gower Str., London WC1E 6BT, UK

Abstract

Recently we have purified an endogenous defensin from Scots pine germs, and cloned cDNA encoding defensin 1 (PsDef1, Pinus sylvestris defensin 1). The cDNA region encoding a mature form of Scots pine defensin 1 was cloned into a vector pET 42a(+), and the expression of recombinant GST/PsDef1 in the Escherichia coli bacterial system was induced. The conditions of production of soluble GST-proteins were optimized. After purification of the recombinant protein by affinity chromatography on Glutathione-Sepharose column and proteolytic cleavage with Factor Xa, the functionally active preparation of recombinant PsDef1 was obtained. Its antifungal activity is similar to that of endogenous Scots pine defensin 1.
Keywords: recombinant defensin PsDef1, expression, affinity purification, antifungal activity

References

[1] Broekaert W., Cammue B., DeBolle M., Thevissen K., DeSamblanx G., Osborn R. Antimicrobial peptides from plants Crit. Rev. Plant Sci 1997 16:297–323.
[2] Pogrebnoj P. V. Peptide antibiotics as a factors of mammalian immunity Biopolym. Cell. 1998; 14(6):512-518
[3] Thomma B., Cammue B., Thevissen K. Plant defensins Planta 2002 216:193–202.
[4] Broekaert W., Terras F., Cammue B., Osborn R. Plant defensins: novel antimicrobial peptides as components of the host defense system Plant Physiol 1995 108:1353–1358.
[5] Almeida M., Cabral K., Zingali R., Kurtenbach E. Characterization of two novel defense peptides from pea (Pisum sativum) seeds Arch. Biochem. Biophys 2000 378: 278–286.
[6] Terras F., Schoofs H., de Bolle M., Van Leuven F., Rees S., Vanderleyden J., Cammue B. P., Broekaert W. F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992;267(22):15301-9.
[7] Segura A., Moreno M., Molina A., Garcia-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea) FEBS Lett 1998 435:159–162.
[8] Bloch C., Richardson M. A new family of small (5 kDa) protein inhibitors of insect -amylases from seeds or sorghum (Sorghum bicolor (L.) Moench.) have sequence homologies with wheat – purothionins FEBS Lett 1991 279:101–104.
[9] Wijaya R., Neumann G., Condron R., Hughes A., Polya G. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin Plant Sci 2000 159:243–255.
[10] Lay F. T., Anderson M. A. Defensin – components of the innate immune system in plants Curr. Prot. Pept. Sci 2005 6:85–101.
[11] Gao A. G., Hakimi S. M., Mittanck C. A., Wu Y., Woerner B. M., Stark D. M., Shah D. M., Liang J., Rommens C. M. Fungal pathogen protection in potato by expression of a plant defensin peptide Nat. Biotechnol 2000 18:1307– 1310.
[12] Thomma B., Broekaert W. Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana Plant Physiol. Biochem 1998 36:533–537.
[13] Asiegbu F., Nahalkova J., Li G. Pathogen-inducible cDNAs from the interactions of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.) Plant Science 2005 168:365–372.
[14] Kovaleva VA, Gut RT. Isolation of the proteins with antifungal activity from Pinus sylvestris L. seedlings. Fiziologiia i biokhimiia kul'turnykh rasteniy. 2007; 39,(2):129-35.
[15] Kovalyova VA, Gout IT, Gout RT. Characterization of defensin-like proteins from Scots pine seedlings Biopolym Cell. 2006; 22(2):126-31
[16] Koval'ova V. A., Gut R. T. Creation and analysis of gene libraries pine. Nauk. visn. NLTU Ukrayiny. 2007; 17(3):30–34.
[17] Kovalyova V. A., Gout I. T., Kiyamova R. G., Filonenko V. V., Gout R. T. Cloning and analysis of defensin 1 cDNA from Scots pine Biopolym. Cell. 2007; 23(5):398-404
[18] Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual New York: Cold Spring Harbor Lab. publ., 1982 545 p.
[19] Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDalton Anal. Biochem 1987 166:368–379.
[20] Broekaert W., Terras F., Cammue B., Vanderleyden J. An automated quantitative assay for fungal growth inhibition FEMS Microbiol. Lett 1990 69:55–60.
[21] Xu H., Reddy A. S. N. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein Plant. Mol. Biol 1997 34:949–959.
[22] Da-Hui L., Gui-Liang J., Ying-Tao Z., Tie-Min A. Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum Appl. Gen. Mol. Biotech 2007 74:146–151.
[23] Thevissen K., Osborn R., Acland D., Broehaert W. Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity Mol. Plant-Microbe Interact 2000 31:54–61.
[24] Osborn R., Desamblanx G., Thevissen K., Goderis I., Torrekenes S., Van Leuven F., Attenborough S., Rees S., Broekaert W. Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae FEBS Lett 1995 368:257–262.
[25] Pervieux I., Bourassa M., Laurans F., Hamelin R., Seguin A. A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments Physiol. Mol. Plant Pathol 2004 64:331–341.
[26] Kovaleva V., Gout R. Isolation and the antifungal activity of defensin-like protein from Scots pine roots Joint conf. UIFRO «Population genetics and genomics of forest trees: from gene function to evolutionary dynamics and conservation»: Abstract Book Madrid, 2006:188–189.