Biopolym. Cell. 2008; 24(1):21-27.
Structure and Function of Biopolymers
Isolation and purification of Thermus thermophilus tRNALys and determination of its modified nucleotides
1Krikliviy I. A., 1Kovalenko O. P., 1Gudzera O. Y., 1Yaremchuk A. D., 1Tukalo M. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Lysyl-tRNA synthetase along with aspartyl- and asparagyl-tRNA synthetase belong to subclass IIb and have a number of specific features. On the one hand, subclass IIb synthetases have N-terminal anticodon-linking domains (~140 residues), function as homodimers a2, and anticodon triplets for each ARSase are the main but insufficient identity elements. On the other hand, all tRNA anticodons, corresponding to each synthetase, contain a central U, and discrimination between them often depends on one nucleotide only. Thus, the questions are posed, concerning the structural basis and the mechanisms for discrimination between these anticodons by a homologous binding domain, as well as the possible role of modified bases in this respect. In this paper we described methodological approach to obtaining pure Thermus thermophilus tRNALys and the determination of modified bases in its structure.
Keywords: тРНКLys, chromatography, extremal thermophyle Thermus thermophilus, benzoylated diethylaminoethylcellulose, modified nucleotides


[1] Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990;347(6289):203-6.
[2] Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990;347(6290):249-55.
[3] McClain WH, Foss K, Jenkins RA, Schneider J. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc Natl Acad Sci U S A. 1990;87(23):9260-4.
[4] Putz J, Puglisi JD, Florentz C, Giege R. Identity elements for specific aminoacylation of yeast tRNAAsp by cognate aspartyl-tRNA synthetase. Science. 1991;252(5013):1696-9.
[5] Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M. In vitro study of E.coli tRNAArg and tRNALys identity elements. Nucleic Acids Res. 1992;20(9):2335-9.
[6] Li S, Pelka H, Schulman LH. The anticodon and discriminator base are important for aminoacylation of Escherichia coli tRNA(Asn). J Biol Chem. 1993;268(24):18335-9.
[7] Saks ME, Sampson JR, Abelson JN. The transfer RNA identity problem: a search for rules. Science. 1994;263(5144):191-7.
[8] Fukunaga J, Ohno S, Nishikawa K, Yokogawa T. A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases. Nucleic Acids Res. 2006;34(10):3181-8.
[9] Cusack S, Yaremchuk A, Tukalo M. The crystal structures of T.thermophilus lysyl-tRNA synthetase complexed with E.coli tRNA(Lys) and a T.thermophilus tRNA(Lys) transcript: Anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 1996;15(22):6321-34.
[10] Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Soll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry. 1993;32(15):3836-41.
[11] Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF. Single atom modification (O-->S) of tRNA confers ribosome binding. RNA. 1999;5(2):188-94.
[12] Yarian C, Marszalek M, Sochacka E, Malkiewicz A, Guenther R, Miskiewicz A, Agris PF. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species. Biochemistry. 2000;39(44):13390-5.
[13] Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ, Guenther R, Miskiewicz A, Agris PF. Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem. 2002;277(19):16391-5.
[14] Hagervall TG, Pomerantz SC, McCloskey JA. Reduced misreading of asparagine codons by Escherichia coli tRNALys with hypomodified derivatives of 5-methylaminomethyl-2-thiouridine in the wobble position. J Mol Biol. 1998;284(1):33-42.
[15] Brierley I, Meredith MR, Bloys AJ, Hagervall TG. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J Mol Biol. 1997;270(3):360-73.
[16] Kruger MK, Pedersen S, Hagervall TG, Sorensen MA. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol. 1998;284(3):621-31.
[17] Isel C, Lanchy JM, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996;15(4):917-24.
[18] Gudzera O. I., Krikliviy I. A., Yaremchuk A. D., Tukalo M. A. The isolation of histidine tRNA from Thermus thermophilus and the study of its primary structure and interaction sites with homologous aminoacyl-tRNA synthetase. Biopolym. Cell. 2006; 22(3):201-209
[19] Krikliviy I. A., Kovalenko O. P., Gudzera O. Y., Yaremchuk A. D., Tukalo M. A. Isolation and purification isoaccepting tRNA1Ser and tRNA2Ser from Thermus thermophilus. Biopolym. Cell. 2006; 22(6):425-432
[20] Gehrke CW, Kuo KC. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989;471:3-36.
[21] Commans S, Lazard M, Delort F, Blanquet S, Plateau P. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases. J Mol Biol. 1998;278(4):801-13.