Biopolym. Cell. 2004; 20(5):429-434.
Biomedicine
Peculiarities of antistress proteins Hsp60 and P450 2E1 expression at dilated cardiomyopathy
1Sidorik L. L., 1Bobyk V. I., 1Kyyamova R. G., 1Kapustjan L. N., 1Rozhko O. T., 1Vigontina O. G., 2Ryabenko D. V., 1Danko I. M., 1Maksymchuk O. V., 1Filonenko V. V., 2Kovalenko V. N., 1Chaschin N. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. M. D. Strazhesko Institute of Cardiology, MAS of Ukraine
    5, Narodnogo Opolchennya Str., Kyiv, Ukraine, 03151

Abstract

The data concerning peculiarities of abundant mitochondrial chaperon Hsp60 and main microsomal cytochrome P450 monooxigenase (2E1 isoform) expression at dilated cardiomyopathy (DCM) progression at the end stage of heart failure have been obtained using Western-blot analysis. The ischemic and normal human hearts were studied as a control. We observed a decrease in Hsp60 level in cytoplasmic fraction of DCM- and ischemia-affected hearts’ left ventricular and significant increase in Hsp60 in mitochondrial fractions of all the hearts investigated. At the same time we detected an increase in P450 2E1 expression level in the ischemic and dilated hearts’ cytoplasmic fractions in comparison with the normal myocardium while no changes in microsomal fractions of the hearts investigated were detected. This could be related to the increased level of oxidative injury of DCM heart muscle. In addition, all changes described are accompanied by a significant decrease in the ATPase activity of myosin purified from the DCM-affected heart in comparison with the normal and ischemic myocardia as well as an increase in specific antimyocardial autoantibodies level in DCM patients sera. The working hypothesis concerning functional relationship between the antistress (HSPs) and antioxidative (cytochromes) systems at DCM progression is proposed.

References

[1] Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992;355(6355):33-45.
[2] Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res. 1998;83(2):117-32.
[3] Thomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995;20(11):456-9.
[4] Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631-77.
[5] Donnelly TJ, Sievers RE, Vissern FL, Welch WJ, Wolfe CL. Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation. 1992;85(2):769-78.
[6] Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001;81(4):1461-97.
[7] Sidorik, L., Rodnin, N., Bobyk, V., Ryabenko, D., Veberov, A., Tkachenko, T. Investigation of autoantibodies directed against tissue-specific myocardial antigens at dilated cardiomyopathy. Biopolym Cell. 1995; 11 (1):81-6.
[8] Fedorkova O. M., Kovenja T. V., Bobyk V. I., Ryabenko D. V., Tregubov V. S., Danilova V. M., Sidorik L. L., Matsuka G. Kh. Investigation of molecular mechanism of cardiomyocytes function at dilated cardiomyopathy using the model of mammals myocardium myofibrile reconstruction. Biopolym Cell. 2000; 16(5): 425-9.
[9] Ryabenko DV, Sidorik LL, Bobyk VI, Sergiyenko OV, Fedorkova OM, Trunina IV, Matsuka GKh. Morphological features of autoimmune destruction infarction caused by a variety of human myocardial antigens: Comparative experimental study. Ukrains'kiy revmatologichniy zh. 2000; 1(2):55-60.
[10] Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci U S A. 1994;91(19):8731-8.
[11] Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A. 1996;93(6):2339-42.
[12] Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation. 2002;105(24):2899-904.
[13] Novak R.F., Woodcroft K.J. The alcohol-inducible form of cytochrome P450 (CYP 2E1): role in toxicology and regulation of expression. Arch Pharm Res. 2000;23(4):267-82.
[14] Ingelman-Sundberg M1, Johansson I, Yin H, Terelius Y, Eliasson E, Clot P, Albano E. Ethanol-inducible cytochrome P4502E1: genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol. 1993;10(6):447-52.
[15] Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet. 2000;355(9208):979-83.
[16] Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev. 1997;77(2):517-44.
[17] Vigontina O.G., Efimenko O.A., Yakovenko L.F., Kiyamova R.G., Filonenko V.V., Gout I.T., Ros N.V., Kosey NV, Tatarchua TF, Sidorik LL, Matsuka GKh. Chaperon Hsp-60 as autoantigen in development of dyshormonal breast diseases. Exp Oncol. ;2002; 24 (2):112-115.
[18] Sidorik LL, Gudzera OI, Dragovoz VA, Tukalo MA, Beresten SF. Immuno-chemical non-cross-reactivity between eukaryotic and prokaryotic seryl-tRNA synthetases. FEBS Lett. 1991;292(1-2):76-8.
[19] Guilbert B, Dighiero G, Avrameas S. Naturally occurring antibodies against nine common antigens in human sera. I. Detection, isolation and characterization. J Immunol. 1982;128(6):2779-87.
[20] Sidorik L. L., Rybkinska T. A., Bakhiya N. G., Rodnin N. V., Filonenko V. V., Entelis N. S., Tarassov I. A., Martin R. P., Matsuka G. Kh. The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases. Biopolym Cell. 2000; 16(5):363-8.
[21] Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature. Nature. 1970;227(5259):680-5.
[22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[23] Kovalenko VH, Ryabenko DV, Sidorik LL, Fedorkova OM, Bobyk VI, Kapustyan LN. Dilated cardiomyopathy: reducing the level of expression of the chaperone Hsp70 in the cytoplasm and mitochondria of myocardium. Cardiology CIS. 2003. 1(1):78-83.
[24] Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol. 2002;14(1):45-51.
[25] Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL. Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol. 1998;30(4):811-8.
[26] Sidorik LL, Dubei IYa, Bobyk VI, Kozlov AV, Fedorkova OM, Kovenya TV, Ryabenko DV, Sergienko OV, Trunina IV, Pogrebnoi PV, Matsuka GKh. Effects of a preventive action of various doses of 2'-5'-oligoadenylate at experimental myosin-induced damage of myocardium. Dopovidi Nats Akad Nauk Ukrainy. 2001; (10):171-4.