Biopolym. Cell. 2004; 20(4):316-320.
Structure and Function of Biopolymers
Restoration of the activity of higler eukaryotic aminoacyl-tRNA synthetases and their stabilization in the presence of ribosomes
1Lukash T. O., 1Turkovskaya G. V., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The present work concerns the functional interaction between the rabbit liver ribosomes and aminoacyl-tRNA synthetases. We have shown that the ribosomes are able to stimulate the activity of leucyl-, isoleucyl- and phenylalanyl-tRNA synthetases. Possible mechanisms of this effect have been analysed. It is concluded, that the ribosomes have chaperone-like property in the maintenance of the ARS active conformation.

References

[1] Spirin A.S., Ovchinnikov L.P. Compartmentation of proteins of the translational machinery on eukaryotic polyribosomes. Progr. Bioorg. Chem. and Mol. Biol., Amsterdam; New York: Elsevier 1984; 71-82.
[2] Negrutskii BS, El'skaia AV. Functional compartmentation of the translation apparatus and channeling of tRNA/aminoacyl-tRNA in cells of higher eukaryotes. Mol Biol (Mosk). 2001;35(4):702-7.
[3] Ussery MA, Tanaka WK, Hardesty B. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Eur J Biochem. 1977;72(3):491-500.
[4] Fedorov AN, Al'zhanova AT, Ovchinnikov LP. Association of eukaryotic aminoacyl-tRNA-synthases with polyribosomes. Biokhimiia. 1985;50(10):1639-45.
[5] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[6] Mirande M, Le Corre D, Louvard D, Reggio H, Pailliez JP, Waller JP. Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Exp Cell Res. 1985;156(1):91-102.
[7] Deutscher MP. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol. 1984;99(2):373-7.
[8] Ivanov LL, Kovalenko MI, Turkovskaia GV, El'skaia AV. Structure-functional properties of eukaryotic aminoacyl-tRNA synthetase Biokhimiia. 1992;57(8):1123-41.
[9] Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[10] Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[11] Stapulionis R, Deutscher MP. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995;92(16):7158-61.
[12] Das B, Chattopadhyay S, Bera AK, Dasgupta C. In vitro protein folding by ribosomes from Escherichia coli, wheat germ and rat liver: the role of the 50S particle and its 23S rRNA. Eur J Biochem. 1996;235(3):613-21.
[13] Kudlicki W, Coffman A, Kramer G, Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101-8.
[14] Chattopadhyay S, Das B, Bera AK, Dasgupta D, Dasgupta C. Refolding of denatured lactate dehydrogenase by Escherichia coli ribosomes. Biochem J. 1994;300 ( Pt 3):717-21.
[15] Carias JR, Mouricout M, Quintard B, Thomes JC, Julien R. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects. Eur J Biochem. 1978;87(3):583-90.
[16] Jakubowski H. A role for protein--protein interactions in the maintenance of active forms of aminoacyl-tRNA synthetases. FEBS Lett. 1979;103(1):71-6.
[17] Rodnina MV1, Serebryanik AI, Ovcharenko GV, El'skaya AV. ATPase strongly bound to higher eukaryotic ribosomes. Eur J Biochem. 1994;225(1):305-10.
[18] Pailliez JP, Waller JP. Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem. 1984;259(24):15491-6.
[19] El'skaya AV, Ovcharenko GV, Palchevskii SS, Petrushenko ZM, Triana-Alonso FJ, Nierhaus KH. Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsic ATPase in 80S ribosomes from higher eukaryotes. Biochemistry. 1997;36(34):10492-7.
[20] Slobin LI. The role of eucaryotic factor Tu in protein synthesis. The measurement of the elongation factor Tu content of rabbit reticulocytes and other mammalian cells by a sensitive radioimmunoassay. Eur J Biochem. 1980;110(2):555-63.
[21] Sara Sana, Ivanov L. L., Turkovskaya G. V., Martinkus Z. P., Kovalenko M. I., El'skaya A. V. Effect of ribosomes on the thermostability of rabbit liver aminoacyl-tRNA synthetases. Biopolym. Cell. 1992; 8(3):6-9.