Biopolym. Cell. 2004; 20(1-2):131-142.
Design of the potential transcription inhibitors based on the 6-azacytosine and 6-aza-iso-cytosine. Nonempirical quantum chemical analysis, synthesis and physico-chemical studies
1Pal'chykovska L. H., 1Platonov M. O., 1Alexeeva I. V., 1Shved A. D.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


High tautomeric and conformation variability of the 6-aza-iso-cytosine aminoderivatives has been first found by the ab initio quantum chemical method on the B3LYP/6-31G(d, p)//HF/6-31G(d, p) theory level. This fact allows suggesting «universal nature» of these aminoderivatives, i. e. their ability to form pairs with both purine and pyrimidine canonic nucleic bases. Proceeding from the theoretical conformation analysis based on the functionally substituted 3- and 5-aminoderivatives as-triazine through the target synthesis the design of the potential inhibitors of NA synthesis was performed. The electronoacceptory properties of the aryl fragment in the synthesized compounds were experimentally found to induce the significant displacement of the high electronic density centers within as-triazine molecule that promotes rather free migration of the NH-proton thus contributing directly to its tautomeric status.


[1] Scientific basis of drug development: Proceedings of Scientific Session chemistry department of NAS of Ukraine. Kharkiv, Base, 1998; 522 p.
[2] Kukhanova M, Krayevsky A, Prusoff W, Cheng YC. Design of anti-HIV compounds: from nucleoside to nucleoside 5'-triphosphate analogs. Problems and perspectives. Curr Pharm Des. 2000;6(5):585-98.
[3] Gaubert G, Gosselin G, Eriksson S, Vita A, Maury G. Unnatural enantiomers of 5-azacytidine analogues: syntheses and enzymatic properties. Nucleosides Nucleotides Nucleic Acids. 2001;20(4-7):837-40.
[4] De Clercq E, Andrei G, Snoeck R, De Bolle L, Naesens L, Degreve B, Balzarini J, Zhang Y, Schols D, Leyssen P, Ying C, Neyts J. Acyclic/carbocyclic guanosine analogues as anti-herpesvirus agents. Nucleosides Nucleotides Nucleic Acids. 2001;20(4-7):271-85.
[5] Cozzarelli NR, Low RL. Mutational alteration of Bacillus subtilis DNA polymerase 3 to hydroxyphenylazopyrimidine resistance: polymerase 3 is necessary for DNA replication. Biochem Biophys Res Commun. 1973;51(1):151-7.
[6] Tarantino PM Jr, Zhi C, Gambino JJ, Wright GE, Brown NC. 6-Anilinouracil-based inhibitors of Bacillus subtilis DNA polymerase III: antipolymerase and antimicrobial structure-activity relationships based on substitution at uracil N3. J Med Chem. 1999;42(11):2035-40.
[7] Ali A, Aster SD, Graham DW, Patel GF, Taylor GE, Tolman RL, Painter RE, Silver LL, Young K, Ellsworth K, Geissler W, Harris GS. Design and synthesis of novel antibacterial agents with inhibitory activity against DNA polymerase III. Bioorg Med Chem Lett. 2001;11(16):2185-8.
[8] Wright GE, Brown NC. Inhibition of Bacillus subtilis DNA polymerase III by arylhydrazinopyrimidines. Novel properties of 2-thiouracil derivatives. Biochim Biophys Acta. 1976;432(1):37-48.
[9] Wright GE, Baril EF, Brown NC. Butylanilinouracil: a selective inhibitor of HeLa cell DNA synthesis and HeLa cell DNA polymerase alpha. Nucleic Acids Res. 1980;8(1):99-109.
[10] Wright GE, Baril EF, Brown VM, Brown NC. Design and characterization of N2-arylaminopurines which selectively inhibit replicative DNA synthesis and replication-specific DNA polymerases: guanine derivatives active on mammalian DNA polymerase alpha and bacterial DNA polymerase III. Nucleic Acids Res. 1982;10(14):4431-40.
[11] Kostina VG, Lysenko NA, Alekseyeva IV. Synthesis of 3-[3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazinyl-6]-propane carbonic acid. Ukr. Khim. Zh. 2003. 69(1):112-9.
[12] Bartova M., Ryba M., Jedlickova Z. Growth inhibition of Escherichia coli B by nucleoside analogs. Collection of Czechoslovak Chemical Communications. 1983; 48 (7):2088-2095.
[13] Alexeeva I. V., Palchikovskaya L. I., Harchenko S. N., Baschta E. V., Platonov M. O., Kostina V. G., Usenko L. S., Lysenko N. A., Malko V. A. New 6-azauracil derivatives - amides of as-triazine carbon acids: their synthesis and antimicrobial activity. Biopolym. Cell. 2002; 18(3):237-24
[14] Gut J., Prystas M., Jonas J. Nucleic acid components and their analogues. X. Methyl derivatives of 6-azauracil thioxo analogues. Collect. Czech. Chem. Communs, 1961; 26:986-997.
[15] Doleschall G. 1,2,4-triazines and condensed derivatives, 1. Selective aminolysis of the carbonyl group of 3-methytthio-6-methyl-l,2,4-triazine-5(2H)-one. Acta Chim. Acad. Sci. Hung, 1967; 53 (3):305-310.
[16] Alexeeva I, Palchikovskaya L, Shalamay A, Nosach L, Zhovnovataya V, Povnitsa O, Dyachenko N. N4-amino-acid derivatives of 6-azacytidine: structure-activity relationship. Acta Biochim Pol. 2000;47(1):95-101.
[17] Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.J., Koseki S., Matsunaga N, Nguyen K, Su. S, Windus TL, Dupuis M, Montgomery J.A. The general atomic and molecule electronic structure system. J. Comput. Chem, 1993; 14(11):1347-1363.
[18] Dewar MJ, Storch DM. Alternative view of enzyme reactions. Proc Natl Acad Sci U S A. 1985;82(8):2225-9.
[19] Kostina V. G., Shalamay A. S., Usenko L. S., Gladkaya V. A. Recyclizalion of O2,2'-cyclopyrimidinnucleosicies with the use of haloid derivatives of threevalent phosphor and quasiphosphonic sails. Biopolym. Cell. 1997; 13(3):197-201.
[20] Mansour A.K., Ibrahim Y.A. The behaviour of some derivatives of 1,2,4-triazine toward diazomethane, amines, ethyl monobromoacelale and tetra-O-acety-l-a-D-glucopyra-nosyl bromide. J. Pract. Chemie. 1973; (2):221-226.
[21] Hrebabesky H., Beranek J. Reaction of 2,2'-anhydro-l-b-D-arabinofuranosyl-6-azauracile, 4-chloropyrimidine and 6-chlo-ropurine with amino acids. Collect. Czech. Chem. Com-muns, 1984; 11:2689-2697.
[22] Mitchell W.L., Hill M.L., Newton R.F. Synthesis of C-nucleoside isosteres of 9-(2-hydroxyethoxymethyl)guanine (Acyclovir). Journal of Heterocyclic Chemistry, 1984; 21 (3):697-699.
[23] Pitha J., Fiedler P., Gut J. Nucleic acids components and their analogues. LXXXII. The fine structure of 6-aza-isocytosine and its derivatives. J. Coll. Czech. Chem. Communs, 1966; 31 (5):1864-1871.
[24] Lay C.-C., Shen C.-C., Hu C.-H. A comparative study of hydrogen bonding using density functional theory. Journal of the Chinese Chemical Society, 2001; 48 (2):145-152.
[25] Verkin BYa, Yanson IK, Sukhodub LF, Teplitskiy AB. The interaction of biomolecules. New experimental approaches and methods. Kiev, Naukova Dumka, 1985; 164 p.