Biopolym. Cell. 2003; 19(4):350-354.
Structure and Function of Biopolymers
Renaturation of phenylalanyl-tRNA synlhetase by translation elongation factor eEF1A
1Lukash T. O., 1Turkovskaya G. V., 1Negrutskii B. S., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Translation elongation factor eEF1A provides binding of codon-specific aminoacyl-tRNA to the ribosomal A-site. We report herewith that, in addition to its role in the translation, eEF1A has chaperone-like properties to promote renaturation of denatured phenylalanyl-tRNA synthetase (PheRS). The eEF1A·GDP and eEF1A · GTP complexes demonstrate the same level of activity in stimulating the enzyme renaturation. The eEF1A capacity to promote renaturation of denatured PheRS might be important for maintenance of the enzyme activity in the protein synthesis compartment in higher eukaryotic cells.

References

[1] Negrutskii BS, El'skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78.
[2] Caldas TD, El Yaagoubi A, Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem. 1998;273(19):11478-82.
[3] Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem. 1997;272(51):32206-10.
[4] Bhadula SK, Elthon TE, Habben JE, Helentjaris TG, Jiao S, Ristic Z. Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line. Planta. 2001;212(3):359-66.
[5] Hotokezaka Y, Tobben U, Hotokezaka H, Van Leyen K, Beatrix B, Smith DH, Nakamura T, Wiedmann M. Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides. J Biol Chem. 2002;277(21):18545-51.
[6] Petrushenko ZM, Budkevich TV, Shalak VF, Negrutskii BS, El'skaya AV. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. Eur J Biochem. 2002;269(19):4811-8.
[7] Pailliez JP, Waller JP. Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem. 1984;259(24):15491-6.
[8] Carias JR, Mouricout M, Quintard B, Thomes JC, Julien R. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects. Eur J Biochem. 1978;87(3):583-90.
[9] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[10] Turkovskaya HV, Belyanskaya LL, Kovalenko MI, El'skaya AV. Renaturation of rabbit liver aminoacyl-tRNA synthetases by 80S ribosomes. Int J Biochem Cell Biol. 1999;31(7):759-68.
[11] Kudlicki W, Coffman A, Kramer G, Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101-8.
[12] Hardesty B, Tsalkova T, Kramer G. Co-translational folding. Curr Opin Struct Biol. 1999;9(1):111-4.
[13] Fedorov AN, Baldwin TO. Cotranslational protein folding. J Biol Chem. 1997;272(52):32715-8.