Biopolym. Cell. 2002; 18(4):287-296.
Structure and Function of Biopolymers
1H-NMR analysis of the interaction of antibiotic mitoxantrone with DNA in the presence of caffeine in aqueous solution
1Veselkov A. N., 1Vysotsky S. A., 1Evstigneev M. P., 2Veselkov D. A., 1Djimant L. N., 1Bolotin P. A., 2Davies D. B.
  1. Sevastopol National Technical University
    33, Universytetska Str., Sevastopol, Ukraine, 99053
  2. Birkbeck, University of London
    Malet Str., Bloomsbury, London WC1E 7HX, UK


The complexation of antitumour antibiotic novantron (NOV) with DNA in the presence of caffeine (CAP) in aqueous solution has been studied by ID and 2D 500 MHz H-NMR spectroscopy. The molecule complexation has been analysed considering thermodynamical parameters of the reactions of self-association and hetero-association of NOV and CAP and their interaction with deoxytetranucleotide 5'-d(TpGpCpA) under the same experimental conditions. It is concluded that novantrone intercalates preferentially into pyrimidine-purine sequence of the oligonudeotide studied. It is shown that the decrease in complexation of NOV with DNA in the presence of CAP in solution is mainly due to «blockage» of the binding sites by the caffeine molecules.


[1] Cotter FE. Therapeutic milestones. Novantrone (mitozantrone). Br J Clin Pract. 1988;42(5):207-9.
[2] Drewinko B, Yang LY, Barlogie B, Trujillo JM. Comparative cytotoxicity of bisantrene, mitoxantrone, ametantrone, dihydroxyanthracenedione, dihydroxyanthracenedione diacetate, and doxorubicin on human cells in vitro. Cancer Res. 1983;43(6):2648-53.
[3] Feofanov A, Sharonov S, Kudelina I, Fleury F, Nabiev I. Localization and molecular interactions of mitoxantrone within living K562 cells as probed by confocal spectral imaging analysis. Biophys J. 1997;73(6):3317-27.
[4] Kapuscinski J, Darzynkiewicz Z. Relationship between the pharmacological activity of antitumor drugs Ametantrone and mitoxantrone (Novatrone) and their ability to condense nucleic acids. Proc Natl Acad Sci U S A. 1986;83(17):6302-6.
[5] Smith PJ, Morgan SA, Fox ME, Watson JV. Mitoxantrone-DNA binding and the induction of topoisomerase II associated DNA damage in multi-drug resistant small cell lung cancer cells. Biochem Pharmacol. 1990;40(9):2069-78.
[6] Kapuscinski J, Darzynkiewicz Z. Interactions of antitumor agents Ametantrone and Mitoxantrone (Novatrone) with double-stranded DNA. Biochem Pharmacol. 1985;34(24):4203-13.
[7] Bailly C, Routier S, Bernier JL, Waring MJ. DNA recognition by two mitoxantrone analogues: influence of the hydroxyl groups. FEBS Lett. 1996;379(3):269-72.
[8] Kapuscinski J, Darzynkiewicz Z, Traganos F, Melamed MR. Interactions of a new antitumor agent, 1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]-ethyl]amino]-9,10-anthracenedion e, with nucleic acids. Biochem Pharmacol. 1981;30(3):231-40.
[9] Chen KX, Gresh N, Pullman B. A theoretical investigation on the sequence selective binding of mitoxantrone to double-stranded tetranucleotides. Nucleic Acids Res. 1986;14(9):3799-812.
[10] Lown JW, Morgan AR, Yen SF, Wang YH, Wilson WD. Characteristics of the binding of the anticancer agents mitoxantrone and ametantrone and related structures to deoxyribonucleic acids. Biochemistry. 1985;24(15):4028-35.
[11] Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy: Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5'-d(GpCpGpC) and 5'-d(CpGpCpG) in aqueous solution. Journal of the Chemical Society - Faraday Transactions, 1996; 92 (19):3545-3557.
[12] Mashkovskiy MD. Drugs. M.: Meditsina, 1985. 2: 107.
[13] Beetham KL, Tolmach LJ. The sction of caffeine on X-irradiated HeLa cells: V. Identity of the sector of cells that expresses potentially lethal damage in G 1 and G 2. Radiat Res. 1982;91(1):199-211.
[14] Selby CP, Sancar A. Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci U S A. 1990;87(9):3522-5.
[15] Witte W, B?hme H. The action of caffeine on the survival of proteus mirabilis and its virulent phage VIr after UV-irradiation and treatment with nitrogen mustard. Mutat Res. 1972;16(2):133-9.
[16] Fritzsche H, Petri I, Sch?tz H, Weller K, Sedmera P, Lang H. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Biophys Chem. 1980;11(1):109-19.
[17] Kimura H, Aoyama T. Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability. J Pharmacobiodyn. 1989;12(10):589-95.
[18] Ross WE, Zwelling LA, Kohn KW. Relationship between cytotoxicity and DNA strand breakage produced by adriamycin and other intercalating agents. Int J Radiat Oncol Biol Phys. 1979;5(8):1221-4.
[19] Ganapathi R, Grabowski D, Schmidt H, Yen A, Iliakis G. Modulation of adriamycin and N-trifluoroacetyladriamycin-14-valerate induced effects on cell cycle traverse and cytotoxicity in P388 mouse leukemia cells by caffeine and the calmodulin inhibitor trifluoperazine. Cancer Res. 1986;46(11):5553-7.
[20] Iliakis G, Nusse M, Ganapathi R, Egner J, Yen A. Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in Chinese hamster V79 cells. Int J Radiat Oncol Biol Phys. 1986;12(11):1987-95.
[21] Traganos F, Kapuscinski J, Darzynkiewicz Z. Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res. 1991;51(14):3682-9.
[22] Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys J. 1996;70(1):443-52.
[23] Kapuscinski J, Kimmel M. Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution. Biophys Chem. 1993;46(2):153-63.
[24] Davies DB, Veselkov DA, Veselkov AN. Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy. Mol Phys. 1999;97(3):439-51.
[25] Davies DB, Veselkov DA, Kodintsev VV, Evstigneev MP, Veselkov AN. 1 H NMR investigation of the hetero-association of aromatic molecules in aqueous solution: factors involved in the stabilization of complexes of daunomycin and acridine drugs . Mol Phys. 2000;98(23):1961–71.
[26] Davies DB, Veselkov DA, Evstigneev MP, Veselkov AN. Self-association of the antitumour agent novatrone (mitoxantrone) and its hetero-association with caffeine. Journal of the Chemical Society, Perkin Transactions 2. 2001;(1):61–7.
[27] Lilley TH, Linsdell H, Maestre A. Association of caffeine in water and in aqueous solutions of sucrose. Faraday Trans. 1992;88(19):2865-70.
[28] Veselkov AN, Djimant LN, Kodinzec VV, Lisutin VA, Parkes H, Davies D. 1H-NMR investigation of deoxytetranucleoside triphosphates D(TpGpCpA) self-association in aqueous solution. Biofizika. 1995; 40(2):283-92.
[29] Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[30] Davies DB, Eaton RJ, Baranovsky SF, Veselkov AN. NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J Biomol Struct Dyn. 2000;17(5):887-901.
[31] Eaton RJ, Baranovski? DA, Veselkov DA, Osetrov SG, Bolotin PA, Dymant LN, Pakhomov VI, Davis DV, Veselkov AN. [Study of the complex formation of daunomycin with deoxytetranucleotides with bases of differing sequence in an aqueous solution by 1H-NMR spectroscopy]. Biofizika. 2000;45(4):586-99.
[32] Eaton RJ, Veselkov DA, Baranovskiy SF, Osetrov CG, Dymant LN, Devis DB, Veselkov AN. Investigation of self-assembly of molecules anthracycline antibiotic in an aqueous solution by 1H NMR. Khimicheskaya fizika. 2000; 19(2):98-104.
[33] Davies DB, Djimant LN, Veselkov AN. 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. Faraday Trans. 1996;92(3):383-90.
[34] Davies DB, Djimant LN, Veselkov AN. 1H NMR thermodynamical analysis of the interactions of proflavine with self-complementary deoxytetranucleotides of different base sequence. Nucleosides Nucleotides.1994;13(1-3):657-71.
[35] McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974;86(2):469-89.
[36] Pullman B. Molecular mechanism of specificity in DNA-antitumor drug interactions. Adv Drug Res. 1989. 18: 1-112.
[37] Davies DB, Djimant LN, Baranovsky SF, Veselkov AN. 1H-NMR determination of the thermodynamics of drug complexation with single-stranded and double-stranded oligonucleotides in solution: ethidium bromide complexation with the deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA). Biopolymers. 1997;42(3):285-95.
[38] Chaires JB. Thermodynamics of the daunomycin-DNA interaction: ionic strength dependence of the enthalpy and entropy. Biopolymers. 1985;24(2):403-19.
[39] Delbarre A, Roques BP, Le Pecq JB, Lallemand JY, Nguyen-Dat-Xuong. PMR studies of the self-association of DNA intercalating ellipticine derivatives in aqueous solution. Biophys Chem. 1976;4(3):275-9.
[40] Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096-102.
[41] Marky LA, Blumenfeld KS, Breslauer KJ. Calorimetric and spectroscopic investigation of drug-DNA interactions. I. The binding of netropsin to poly d(AT). Nucleic Acids Res. 1983;11(9):2857-70.
[42] Sturtevant JM. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977;74(6):2236-40.
[43] Reinert KE. Anthracycline-binding induced DNA stiffening, bending and elongation; stereochemical implications from viscometric investigations. Nucleic Acids Res. 1983;11(10):3411-30.
[44] Veselkov DA, Davies DB, Djimant LN, Veselkov AN. Molecular basis of the protective action of caffeine on the complexation of intercalating ligands with DNA. Biopolym Cell. 2000; 16(6):468-81.
[45] Davies DB, Veselkov DA, Djimant LN, Veselkov AN. Hetero-association of caffeine and aromatic drugs and their competitive binding with a DNA oligomer. Eur Biophys J. 2001;30(5):354-66.