Biopolym. Cell. 2001; 17(6):487-500.
Structure and Function of Biopolymers
The molecular mechanisms derivation of mutation bases alteration after a postreplication SOS-reparation an DNA contaning thymine dimers
1Grebneva H. A.
  1. Donetsk Institute for Physics and Engineering named after O. O. Galkin, NAS of Ukraine
    72, R. Luxembourg Str., Donetsk, Ukraine, 83114


Molecular mechanisms of mutation of bases alteration after the postreplication SOS-reparation of DNA containing thymine dimers The postreplication SOS-reparation at which the postreplicative gaps are built up de novo is analyzed. The DNA molecule, containing in one of its chains thymine dimers with nucleotide bases in rare tautomeric forms, which can influence the character of base pairing, is considered. Depending on the type of the dimers formed the postreplication SOS-reparation may lead to 1) transition or homologous transversion; 2) appearance of one-nucleotide gap, causing a shift mutation of a reading frame; or 3) absence of mutation at all. It has been concluded that the dimers studied (cyclic butane or 6–4 adducts) cause the targeted mutagenesis. The assumption has been made that the SOS-system induction, decreasing proofreading functions (in comparison with polymerase) weakens the control over the matrix DNA bases to be in the canonical tautomeric forms.


[1] Auerbach C. Mutation research: problems, results and perspectives. 1976; London: Chapman & Hall. 504 p.
[2] Parris CN, Levy DD, Jessee J, Seidman MM. Proximal and distal effects of sequence context on ultraviolet mutational hotspots in a shuttle vector replicated in xeroderma cells. J Mol Biol. 1994;236(2):491-502.
[3] Grebneva HA. The nature and possible mechanisms of potential mutations formation due to the appearance of tymine dimers after irradiating two-stranded DNA by ultra-violet light. Biopolym Cell. 2002; 18(3):205-18.
[4] Grodzinskiy DM. Radiobiology. Kiev: Lybid, 2000.
[5] Tarasov VA. Molecular mechanisms of repair and mutagenesis. M.: Nauka, 1982. 226 p.
[6] Banerjee SK, Borden A, Christensen RB, LeClerc JE, Lawrence CW. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells. J Bacteriol. 1990;172(4):2105-12.
[7] Jonczyk P, Fijalkowska I, Ciesla Z. Overproduction of the epsilon subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(23):9124-7.
[8] Hagen U. Biochemical aspects of radiation biology. Experientia. 1989;45(1):7-12.
[9] Lawrence CW, Banerjee SK, Borden A, LeClerc JE. T-T cyclobutane dimers are misinstructive, rather than non-instructive, mutagenic lesions. Mol Gen Genet. 1990;222(1):166-8.
[10] LeClerc JE, Borden A, Lawrence CW. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3' thymine-to-cytosine transitions in Escherichia coli. Proc Natl Acad Sci U S A. 1991;88(21):9685-9.
[11] Taylor JS, Garrett DS, Brockie IR, Svoboda DL, Telser J. 1H NMR assignment and melting temperature study of cis-syn and trans-syn thymine dimer containing duplexes of d(CGTATTATGC).d(GCATAATACG). Biochemistry. 1990;29(37):8858-66.
[12] Levine JG, Schaaper RM, DeMarini DM. Complex frameshift mutations mediated by plasmid pKM101: mutational mechanisms deduced from 4-aminobiphenyl-induced mutation spectra in Salmonella. Genetics. 1994;136(3):731-46.
[13] Kurennaya ON, Schernova OYu, Tarasov VA. Induction of replicating instability by different types of mutagens in fission years Schizosaccharomyces pombe. Genetika; 1982, 18(3):409-12.
[14] Bresler SE. About solved and unsolved problems of mutagenesis and repair. Damage and DNA repair. Pushchino, 1980: 16-26.
[15] Strauss BS. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? BioEssays. 1991;13(2):79–84.
[16] Zavigelskiy GB. Photochemistry of nucleic acids. Molecular. mechanisms biol. actions optical measurement. M.: Nauka, 1988:5-22.
[17] Poltev VI, Shuliupina NV, Bruskov VI. [Molecular mechanisms of directing biosynthesis of nucleic acids. Theoretical study of complementary base pair recognition by DNA polymerases]. Mol Biol (Mosk). 1995;29(5):1011-22.
[18] Poltev VI, Shuliupina NV, Bruskov VI. [Molecular mechanisms of the regularity of nucleic acid biosynthesis. Computer study of the role of polymerases in the formation of irregular pairs by modified bases]. Mol Biol (Mosk). 1996;30(6):1284-98.
[19] Poltev VI, Shuliupina NV, Bruskov VI. [Molecular mechanisms of nucleic acid biosynthesis validity. Comparison of results of computer modeling with experimental data]. Mol Biol (Mosk). 1998;32(2):268-76.
[20] Poltev VI, Bruskov VI, Shuliupina NV, Rein R, Shibata M, Ornstein R, Miller J. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations]. Mol Biol (Mosk). 1993;27(4):734-57.
[21] Danilov VI, Kventsel GF. Electronic submission to the theory of point mutations. Kiev: Naukova Dumka, 1971; 83 p.
[22] Clementi E, Corongiu G, Detrich J, Chin S, Domingo L. Parallelism in quantum chemistry: Hydrogen bond study in DNA base pairs as an example. Int J Quant Chem. 1984;26(S18):601–18.
[23] Grebneva EA. [Irradiation of DNA with ultraviolet light: potential changes and mutations]. Mol Biol (Mosk). 1994;28(4):805-12.
[24] Danilov VI, Mikhaleva OV, Slyusarchuk ON, Stewart JJ, Alderfer JL. On the new mechanism of mutations induced by UV-light. A theoretical study of the double-prolon phototautomerism in a model base pair of DNA. Biopolym Cell. 1997; 13(4):261-8.
[25] Raghunathan G, Kieber-Emmons T, Rein R, Alderfer JL. Conformational features of DNA containing a cis-syn photodimer. J Biomol Struct Dyn. 1990;7(4):899-913.
[26] Krutiakov VM. [Logical regulation of DNA polymerase mutagenesis and autonomous 3'-5'-exonuclease]. Mol Biol (Mosk). 1998;32(2):229-32.
[27] Sch?r P, Kohli J. Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe. Genetics. 1993;133(4):825-35.
[28] Radnedge L, Pinney RJ. Post-UV survival and mutagenesis in DNA repair-proficient and -deficient strains of Escherichia coli K-12 grown in 5-azacytidine to inhibit DNA cytosine methylation: evidence for mutagenic excision repair. J Pharm Pharmacol. 1993;45(3):192-7.
[29] Cohen-Fix O, Livneh Z. In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli. J Biol Chem. 1994;269(7):4953-8.
[30] Cohen-Fix O, Livneh Z. Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway. Proc Natl Acad Sci U S A. 1992;89(8):3300-4.
[31] Walker GC. SOS-regulated proteins in translesion DNA synthesis and mutagenesis. Trends Biochem Sci. 1995;20(10):416-20.
[32] Kornberg A. DNA Synthesis, W. H. Freeman and Co., San Francisco, 1974.
[33] Huisman O, D'Ari R. An inducible DNA replication-cell division coupling mechanism in E. coli. Nature. 1981;290(5809):797-9.
[34] Cairns J, Robins P, Sedgwick B, Talmud P. The inducible repair of alkylated DNA. Prog Nucleic Acid Res Mol Biol. 1981;26:237-44.
[35] Defais M, Jeggo P, Samson L, Schendel PF. Effect of the adaptive response on the induction of the SOS pathway in E. coli K-12. Mol Gen Genet. 1980;177(4):653-9.
[36] Costa de Oliveira R, Laval J, Boiteux S. Induction of SOS and adaptive responses by alkylating agents in Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase activities. Mutat Res. 1987;183(1):11-20.
[37] Sommer S, Leita? A, Bernardi A, Bailone A, Devoret R. Introduction of a UV-damaged replicon into a recipient cell is not a sufficient condition to produce an SOS-inducing signal. Mutat Res. 1991;254(2):107-17.
[38] Sommer S, Bailone A, Devoret R. The appearance of the UmuD'C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol Microbiol. 1993;10(5):963-71.
[39] Frank EG, Woodgate R, Hauser J, Livine AS. Role of Rec A protein in inducible mutagenesis in Escherichia coli III. Biomol Struct Dyn. 1993; 10(6): 49.
[40] Trovcevi? Z, Petranovi? M, Brci?-Kosti? K, Petranovi? D, Lers N, Salaj-Smic E. A possible interaction of single-strand binding protein and RecA protein during post-ultraviolet DNA synthesis. Biochimie. 1991;73(4):515-7.
[41] Mikha?lov VS. [DNA polymerases of eukaryotes]. Mol Biol (Mosk). 1999;33(4):567-80.
[42] Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77-84.
[43] Boulard Y, Cognet JA, Gabarro-Arpa J, Le Bret M, Sowers LC, Fazakerley GV. The pH dependent configurations of the C.A mispair in DNA. Nucleic Acids Res. 1992;20(8):1933-41.
[44] Topal MD, Fresco JR. Complementary base pairing and the origin of substitution mutations. Nature. 1976;263(5575):285-9.
[45] Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45.
[46] Frank-Kamenetski? MD. [Fluctuational mobility of DNA]. Mol Biol (Mosk). 1983;17(3):639-52.
[47] Kwiatkowski JS, Person WB. The tautomerism of the nucleic acid bases revisited: from non-interacting to interacting bases. Theor. Biochem Mol. Biophys. Eds D. L. Beveridge. R. Lavery. New York: Adenine press, 1990: 153-71.
[48] Novak MJ, Les A, Adamowicz L. Application of ab-initio quantum mechanical calculations to assign matrix-isolation IR spectra of oxopyrimidines. Trends Phys Chem. 1994; 4: 137-68.