Biopolym. Cell. 2001; 17(1):43-60.
Structure and Function of Biopolymers
Influence of methylation and interactions with amino acid carboxylic group on UV spectra of purine bases and nucleosides in dimethylsulfoxide. 3. Hypoxanthine and xanthine
1Stepanyugin A. V., 1Kolomiets' I. M., 1Potyahaylo A. L., 2Tryhubenko S. A., 2Bohdan T. V., 1Samijlenko S. P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. National University of Kyiv-Mohyla Academy
    2, Skovorody Str., Kyiv, Ukraine, 04655

Abstract

UV absorption spectra of hypoxanthine, xanthine, their nucleosides and a number of their methyl derivatives were studied in anhydrous DMSO, and the spectral changes under the interaction with neutral and deprotonated (carboxylate-ion) amino acid carboxylic group were traced. By the semi-empirical quantum-chemical method MNDOlH it was shown, that the interaction with carboxylate-ion fixes Hyp in the rare enolic form and shifts the N7H ↔ N9H tautomeric equilibrium to the left while in the case of Xan provokes the N7H→N9H transition, which is blocked up by its methyl substitution at the position N3. Significant changes in the UV spectra of Xan, m3Xan, m9Xan and X under the interaction with carboxylate-ion are determined by the essential contribution to a complex formation of the proton transfer from a base to the ligand, m9Xan and X proving to be partly deprotonated even on the account of the solvent. It wasestablished that methyl substitution at the position N7 in m71 and m7 X resulted in the practical absence of their interaction with carboxylate-ion and the rise of a new ability of forming complexes with the neutral carboxylic group. The substitution of the C8H group for N in 8-azaXan does not change the interaction specificity of this base with two forms of carboxylic group.

References

[1] Stepanyugin AV, Kolomiets IM, Samijlenko SP. Influence of methylalion and interactions with amino acid carboxylic group on UV spectra of purine nucleotide bases and nucleosides in dimethylsulfoxide. 1. Adenine. Biopolym Cell. 1999; 15(5):422-31.
[2] Stepanyugin AV, Kotomiets IM, Potyahaylo AL, Samijlenko SP. Influence of methylation and interactions with amino acid carboxylic group on UV spectra of purine nucleotide bases and nucleosides in dimethylsulfoxide. 2. Guanine. Biopolym Cell. 2000; 16(5):384-402.
[3] Mizuno H, Fujiwara T, Tomita K. The Crystal and Molecular Structure of the Sodium Salt of Xanthine. Bull Chem Soc Jpn. 1969;42(11):3099–105.
[4] Poltev VI, Bruskov VI, Shuliupina NV, Rein R, Shibata M, Ornstein R, Miller J. Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations. Mol Biol (Mosk). 1993;27(4):734-57.
[5] Horbatschevsky I. Synthese der Harusaure. Wiener Berichte. 1882; 17:17-9.
[6] Horbatschevsky I. Uber die neue Synthese und die Constitution der Harusaure. Wiener Berichte. 1887; 24: 13-7.
[7] Horbatschevsky I. Untersuchungen uber die Enstehung der Harusaure in Sangethier Organismus. Wiener Berichte. 1899;24:12-4.
[8] Gorbachevski IO. About crystallized xanthine and guanine. Zbirka matematychno pryrodopysnoyi likars?koyi sektsiyi NTSH. 1897; 1(1):1-19.
[9] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[10] Rossi C, Picchi MP, Tiezzi E, Corbini G, Corti P. Conformational and dynamic investigation in solution of inosine and its molecular complex, inosiplex by proton and carbon NMR spectroscopy. Magnetic Resonance in Chemistry. New-York: John Wiley & Sons, 1990; Vol. 28:348-54.
[11] Mitsuya H, Broder S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideoxynucleosides. Proc Natl Acad Sci U S A. 1986;83(6):1911-5.
[12] Hovorun DM. The prototropic tautomerism of nitrogen bases: a new insight into the old problem. Biopolym Cell. 1997; 13(3):191-6.
[13] Sabio M, Topiol S, Lumma WC. An investigation of tautomerism in adenine and guanine. J Phys Chem. 1990;94(4):1366–72.
[14] Nowak MJ, Lapinski L, Kwiatkowski JS, Leszczy?ski J. Molecular structure and infrared spectra of adenine. Experimental matrix isolation and density functional theory study of adenine 15N isotopomers. J Phys Chem. 1996;100(9):3527–34.
[15] Nowak MJ, Lapinski L, Kwiatkowski JS. An infrared matrix isolation study of tautomerism in purine and adenine. Chem Phys Lett. 1989;157(1-2):14-8.
[16] Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Tautomerism N(9)H - N(7)H of purine, adenine, and 2-chloroadenine: combined experimental IR matrix isolation and ab initio quantum mechanical studies. J Phys Chem. 1994;98(11):2813–6.
[17] Szczepaniak K, Szczesniak M, Person WB. Infrared studies and the effect of ultraviolet irradiation on the tautomers of 9-methylguanine isolated in an argon matrix. Chem Phys Lett. 1988;153(1):39–44.
[18] Kwiatkowski JS, Person WB. The tautomerism of the nucleic acid bases revisited: from non-interecting to interecting bases. Theoretical Biochemistry and Molecular Biophysics. Eds D. L. Beverige, R. Lovery. New York: Adenine press, 1990;153-71.
[19] Szczepaniak K, Szczesniak M. Matrix isolation infrared studies of nucleic acid constituents: Part 4. Guanine and 9-methylguanine monomers and their keto-enol tautomerism. J Mol Struct. 1987;156(1-2):29-42.
[20] Brown RD, Godfrey PD, McNaughton D, Pierlot AP. A study of the major gas-phase tautomer of adenine by microwave spectroscopy. Chem Phys Lett. 1989;156(1):61–3.
[21] Leszczynski J. The potential energy surface of guanine is not flat: An ab initio study with large basis sets and higher order electron correlation contributions. J Phys Chem A. 1998;102(13):2357–62.
[22] LeBreton PR, Yang X, Urano S, Fetzer S, Yu M, Leonard NJ, et al. Photoemission properties of methyl-substituted guanines: photoelectron and fluorescence investigations of 1,9-dimethylguanine, O6,9-dimethylguanine, and 9-methylguanine. J Am Chem Soc. 1990;112(6):2138–47.
[23] Gould IR, Vincent MA, Hillier I, Lapinski L, Nowak MJ. A new theoretical prediction of the infrared spectra of cytosine tautomers. Spectrochim Acta A. 1992;48(6):811–8.
[24] Cavalieri LF, Fox JJ, Stone A, Chang N. On the nature of xanthine and substituted xanthines in solution 1 . J Am Chem Soc. 1954;76(4):1119–22.
[25] Lichtenberg D, Bergmann F, Neiman Z. Tautomeric forms and ionisation processes in xanthine and its N-methyl derivatives. J Chem Soc. 1971;1676-82.
[26] Bergmann F, Kleiner M, Neiman Z, Rashi M. The ionisation sequence of hypoxanthine and 6-mercaptopurine. Isr J Chem. 1964;2(5):185-96.
[27] Morozov YuV, Vazhulina NP. Electronic structure, spectroscopy and reactivity of molecules. Nucleobases, vitamins B6 and analogs. Ed MV Volkenshtein. M.: Nauka, 1989. 288 p.
[28] Mizuno H, Fujiwara T, Tomita K. The crystal and molecular structure of the sodium salt of xanthine. Bull Chem Soc Jpn. 1969;42(11):3099–105.
[29] Kondratyuk IV, Samijlenko SP, Kolomiets' IM, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct. 2000; 523(1-3):109-18.
[30] Kondratyuk IV, Samijlenko SP, Kolomiets IM, Potyahaylo AL, Hovorun DM. Prototropic molecular-zwitterionic tautomerism of xanthine and hypoxanthine: unexpected biological view. Biopolym. Cell. 2000; 16(2):124-37.
[31] Kondratyuk IV, Govorun DM, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of xanthine: AMI calculation. Biopolym Cell. 1994; 10(6):52-60.
[32] Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of hypoxanthine: AMI calculation in vacuum. Biopolym Cell. 1995; 11(1):30-5.
[33] Kondratyuk IV, Govorun DM, Zheltovskyy MV. Prototropic tautomerism of molecular xanthine. Dopovidi Nats Akad Nauk Ukrainy. 1995; (4):109-12.
[34] Kondratyuk IV, Govorun DM, Zheltovsky MV. Prototropic molecular-zwitterion tautomerism hypoxanthine. Dopovidi Nats Akad Nauk Ukrainy. 1995;(7):135-8.
[35] Sponer J, Leszczy?ski J. Tautomerism of xanthine: The second-order Moller-Plesset study. Struct Chem. 1995;6(4-5):281–6.
[36] Hern?ndez B, Luque FJ, Orozco M. Tautomerism of xanthine oxidase substrates hypoxanthine and allopurinol. J Org Chem. 1996;61(17):5964–71.
[37] Hern?ndez R, Orozco M, Luque FJ. Tautomerism of xanthine and alloxanthine: A model for substrate recognition by xanthine oxidase. J Computer-Aided Mol Des. 1996;10(6):535–44.
[38] Costas ME, Acevedo-Ch?vez R. Density functional study of the neutral hypoxanthine tautomeric forms. J Phys Chem. 1997;101(44):8309–18.
[39] Hern?ndez B, Orozco M, Luque FJ. Role of tautomerism of 2-azaadenine and 2-azahypoxanthine in substrate recognition by xanthine oxidase. J Comput Aided Mol Des. 1997;11(2):153-62.
[40] Sheina GG, Stepanian SG, Radchenko ED, Blagoi YP. IR spectra of guanine and hypoxanthine isolated molecules. J Mol Struct. 1987;158:275–92.
[41] Munns AR, Tollin P. The crystal and molecular structure of inosine. Acta Crystallogr B. 1970;26(8):1101-13.
[42] Krishnan R., Seshadri T. P. Crystal structure of sodium deoxyinosine. Nucleosides and Nucleotides.—1992,—11, N 5.—P. 1047—1057.
[43] Lin J, Yu C, Peng S, Akiyama I, Li K, Lee LK, LeBreton PR. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J Am Chem Soc. 1980;102(14):4627–31.
[44] Hovorun DM, Kondratyuk IV. Gas-phase acid-alkaline properties of canonical nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1998; (1):207-12.
[45] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular xanthine and its complex formation ability. Biopolym Cell. 1994; 10(6):61-4.
[46] Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular hypoxanthine in vacuum. Biopolym Cell. 1995; 11(1):36-9.
[47] Govorun DM, Kondratyuk IV, Zheltovsky NV. Nucleotide bases as CH-Acids. Biopolym Cell. 1995; 11(5):15-20.
[48] Musui Q, Yuoxin J, Wenqin L, Junru B, Peijuan G, Renlong W, Keqin Z, Debao W. Biological function of modified nucleotides in tRNA molecules-synthesis and biological activity of the analogues of yeast alanyl tRNA with 134 replaced by A34 or G34. Scientia Sinica, Ser. B. 1988;31: 695-701.
[49] Zheltovsky NV, Samiylenko SP, Kolomiets IN, Kondratyuk IV, Stepanyugin AV. The investigation of interactions of hypoxanthine, xanthine and their methyl and glycosyl derivatives with amino acid carboxylic group by spectroscopic methods. Biopolym Cell. 1993; 9(3):17-22.
[50] Zheltovsky NV, Samoilenko SA, Kondratyuk IV, Kolomiets IN, Stepanyugin AV. Recognition of purine bases and nucleosides by the amino acid carboxylic group. J Mol Struc. 1995;344(1-2):53–62.
[51] Handbook of Biochemistry and Molecular Biology. Nucleic Acids. Ed. G. D. Fasman. Boca Raton: CRC press, 1986; Vol. 1:637 p.
[52] Michelson AM, Pochon F. Polynucleotide analogues. VII. Methylation of polynucleotides. Biochim Biophys Acta. 1966;114(3):469-80.
[53] Borodavkin AV, Budovskiy EI, Morozov YuV, Savin FA, Simukova NA. Electronic structure of the UV absorption spectra and reactivity of the components of nucleic acids. The results of science and technology. Ed. Vol'kenshten. M: VINITI, (Molecular. Biology, vol. 14). 1977. 227 p.
[54] Atkins P. Molecules. 1 st edition. Scientific American Library; 1987; 197 p
[55] Hovorun DM. On the microstructural origin of the linear DNA curvature. Dopovidi Nats Akad Nauk Ukrainy. 1998; (5):189-95.
[56] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. Structural peculiarities of 6-azacytosine and its derivatives imply intramolecular H-bonds. J Mol Struct. 1999; 484(1-3):31-8.
[57] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. 1H NMR investigation on 6-azacytidine and its derivatives. Spectrochim. Acta - Part A: Mol Biomol Spectrosc. 1999; 55(5):1133-41.