Biopolym. Cell. 1997; 13(6):453-459.
Structure and Function of Biopolymers
Synthesis and studies of the ribofuranosides phenazazoles
1Makytruk V. L., 1Shalamay A. S., 1Kondratyuk I. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Reaction of glycosilation of imidazo-[4,5-d]-phenazine and 1,2,3-triazol-[4,5-d]-phetiazine was studied. The respective ribofuranosides was converted, into their 2'-deoxy analogs. Physical ami chemical properties of obtained compounds are presented.


[1] Uhlmaun E, Peymau A. Antisense-oligonucleotide: a new therapeutic principle. Chem Rev. 1990; 90(6): 543-84.
[2] Knorre DG, Vlassov VV. Antisense oligonucleotide derivatives as gene-targeted drugs. Biomed Sci. 1990;1(4):334-43.
[3] Conkin B, Sasmor II, Digiorgio J, Warren W. Producting pharmaceutical-grade antisense DNA an evolving discipline. Millipore Bioforum (Technol. News for the Life Scientist). Bedford, 1992. Bull 2: 2-4.
[4] H?l?ne C, Montenay-Garestier T, Saison T, Takasugi M, Toulm? JJ, Asseline U, Lancelot G, Maurizot JC, Toulm? F, Thuong NT. Oligodeoxynucleotides covalently linked to intercalating agents: a new class of gene regulatory substances. Biochimie. 1985;67(7-8):777-83.
[5] Zarytova VF, Ivanova EM, Kutyavin IV. Synthesis derivatives of oligodeoxyribonucleotides containing at the 3'-end of the chain residue N-(2-hydroxyethyl)-phenazinium Izvestia SO AN USSR. khim seria 1989;(6):3-9.
[6] Keller TH, H?ner R. Synthesis and hybridization properties of oligonucleotides containing 2'-O-modified ribonucleotides. Nucleic Acids Res. 1993;21(19):4499-505.
[7] Bischofberger N, Matteucci MD. Synthesis of novel polycyclic nucleoside analogs, incorporation into oligodeoxynucleotides, and interaction with complementary sequences. J Am Chem Soc. 1989;111(8):3041–6.
[8] Cohen JS, Farschtschi N, Polushin N. Design and biological properties of antisense oligonucleotide analogs. Genetically targeted research and therapeutics: Antisense and Gene the­ rapy. Keystone, 1993: 12-8.
[9] Zozulya V, Blagoi Y, L?ber G, Voloshin I, Winter S, Makitruk V, Shalamay A. Fluorescence and binding properties of phenazine derivatives in complexes with polynucleotides of various base compositions and secondary structures. Biophys Chem. 1997;65(1):55-63.
[10] Blagoi YuP, Zozulya VN, Voloshin IM, Makitruk VL, Shalamay AS, Shcherbakova AS. Investigation of phenazine derivatives interaction with DNA by polarized fluorescence method. Biopolym Cell. 1997; 13(1):22-9.
[11] Zarytova VF, Kutyavin IV, Mamayev SV, Podyminogin MA. Site-specific chemical cleavage of a single-stranded DNA fragment by an alkylating derivative of tetranucleotide d(pApGpCpA) in the presence of tetranucleotide effectors. Bioorg Khim. 1992;18 (7):895-900
[12] Joues R, Lin K-Y.y Milligan JF et al. Synthesis and binding properties of pyrimidine oligonucleotide analogs con­ taining neutral phosphodiester replacementes. Genetically targeted research and therapeutigs: Antisense and Gene The­ rapy. Keystone, 1993: 19-24.
[13] Babichev VV, Skripal’ IG, Bezugly SV, Panchenko LP, Shalamai AS, Makitruk VL, Goncharenko VS, Shimko NN. Oligodeoxyribonucleotides complementary to the Mollicute ribosomel operon sections as inhibitors of transcription in vitro. Mikrobiol Zh. 1993; 55(6):29-35.
[14] Kobylinskaya VI, Dashevskaya TA, Shalamai AS, Faryatieva LB, Gida VM, Pazdersky YuA, Nazaretyan VP. Glycosilation of substituted pyrimidines and 6-azapyrimidines in presence of Mycellas. Ukr Khim Zh. 1991; 57(3):324-7.