Biopolym. Cell. 1997; 13(5):352-361.
Reviews
Why and how do cells die?
1Stoika R. S., 2Phylchenkov A. A., 3Stoika B. R.
- Division of Cell Regulatory Systems of O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
14/16, Drahomanov Str., Lviv, Ukraine, 79005 - R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
45, Vasilkivska Str., Kyiv, Ukraine, 01022 - Lviv National Medical University
69, Pekarska Str., Lviv, Ukraine, 79010
Abstract
Review gives characteristics of the main causes of cell death in tissues and organs of animals and man – apoptosis and necrosis. The main attention is paid to the mechanism!, of programmed cellular suicide by apoptosis. The data arc provided about the most important genes which are engaged in the regulation of apoptosis. It is concluded that study of molecular mechanisms of apoptosis can be useful in the elaboration of new generation of drugs for effecting the processes of cell death occurring during different diseases.
Full text: (PDF, in Ukrainian)
References
[1]
Trauth BC, Keesey J. Cell death. Guide to cell prolifera tion and apoptosis methods. Boehringer Mannheim, 1995: 34-62.
[2]
Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013-26.
[3]
Glucksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc. 1951;26(1):59-86.
[4]
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57.
[6]
Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994;77(4):551-63.
[7]
Lockshin RA, Williams CM. Programmed cell death. IV. The influence of drugs on the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1965;11(6):803-9.
[8]
Kudryavets YuI, Phylchenkov AA, Abramenko IV, Polischouk LZ, Slukvin II, Belous NI. Dynamics of apoptotic events induced in human leukemia U-937 cells by tumor necrosis factor. Eksperimentalnaya Onkologiya. 1996;18 (4):353-365.
[9]
Kudryavets YuI, Phylchenkov AA, Slukvin IL. et al. Transferrin receptor expression in human leukemia U-937 cells under TNF-induced apoptosis. Med Biol Environ. 1996; 24:71-9.
[10]
Cohen JJ. Programmed cell death in the immune system. Adv Immunol. 1991;50:55-85.
[12]
Martin SJ, Cotter TG. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. Int J Radiat Biol. 1991;59(4):1001-16.
[13]
Matsubara K, Kubota M, Adachi S, Kuwakado K, Hirota H, Wakazono Y, Akiyama Y, Mikawa H. Induction of apoptosis in childhood acute leukemia by chemotherapeutic agents: failure to detect evidence of apoptosis in vivo. Eur J Haematol. 1994;52(1):47-52.
[14]
Begleiter A, Lee K, Israels LG, Mowat MR, Johnston JB. Chlorambucil induced apoptosis in chronic lymphocytic leukemia (CLL) and its relationship to clinical efficacy. Leukemia. 1994;8 Suppl 1:S103-6.
[16]
McGill G, Fisher DE. Apoptosis in tumorigenesis and cancer therapy. Front Biosci. 1997;2:d353-79.
[17]
Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Apoptosis. Eds E. Minich, R. T. Schimke. New York: Plenum press, 1994: 1-13.
[18]
Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993;75(4):641-52.
[19]
Chen L, Marechal V, Moreau J, Levine AJ, Chen J. Proteolytic cleavage of the mdm2 oncoprotein during apoptosis. J Biol Chem. 1997;272(36):22966-73.
[20]
Teoh G, Urashima M, Ogata A, Chauhan D, DeCaprio JA, Treon SP, Schlossman RL, Anderson KC. MDM2 protein overexpression promotes proliferation and survival of multiple myeloma cells. Blood. 1997;90(5):1982-92.
[21]
Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376(6535):37-43.
[23]
Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, Greenberg A, Yuan J. Activation of caspase-2 in apoptosis. J Biol Chem. 1997;272(34):21010-7.
[24]
Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275(5296):90-4.
[25]
Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A. 1985;82(21):7439-43.
[26]
Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell. 1994;76(4):665-76.
[27]
Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science. 1992;258(5090):1955-7.
[28]
Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335(6189):440-2.
[29]
Simon SM, Schindler M. Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci U S A. 1994;91(9):3497-504.
[30]
Robinson LJ, Roberts WK, Ling TT, Lamming D, Sternberg SS, Roepe PD. Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry. 1997;36(37):11169-78.
[31]
Sugrue MM, Shin DY, Lee SW, Aaronson SA. Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci U S A. 1997;94(18):9648-53.
[32]
Fazeli A, Steen RG, Dickinson SL, Bautista D, Dietrich WF, Bronson RT, Bresalier RS, Lander ES, Costa J, Weinberg RA. Effects of p53 mutations on apoptosis in mouse intestinal and human colonic adenomas. Proc Natl Acad Sci U S A. 1997;94(19):10199-204.
[33]
Sakamuro D, Sabbatini P, White E, Prendergast GC. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene. 1997;15(8):887-98.
[34]
Lotem J, Sachs L. Cytokine suppression of protease activation in wild-type p53-dependent and p53-independent apoptosis. Proc Natl Acad Sci U S A. 1997;94(17):9349-53.
[35]
Hipp ML, Bauer G. Intercellular induction of apoptosis in transformed cells does not depend on p53. Oncogene. 1997;15(7):791-7.
[36]
Hooper ML. The role of the p53 and Rb-1 genes in cancer, development and apoptosis. J Cell Sci. 1994;1994(Supplement 18):13–7.
[37]
Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994;76(6):969-76.
[38]
Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood. 1995;85(12):3378-404.
[39]
Trauth BC, Klas C, Peters AM, Matzku S, M?ller P, Falk W, Debatin KM, Krammer PH. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science. 1989;245(4915):301-5.
[40]
Debatin KM, Fahrig-Faissner A, Enenkel-Stoodt S, Kreuz W, Benner A, Krammer PH. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood. 1994;83(10):3101-3.
[41]
Falk MH, Trauth BC, Debatin KM, Klas C, Gregory CD, Rickinson AB, Calender A, Lenoir GM, Ellwart JW, Krammer PH, et al. Expression of the APO-1 antigen in Burkitt lymphoma cell lines correlates with a shift towards a lymphoblastoid phenotype. Blood. 1992;79(12):3300-6.
[42]
Suda T, Nagata S. Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med. 1994;179(3):873-9.
[43]
Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169-78.
[44]
Moizis PK. Human telomere. V mire nauki. 1991;(10): 24-31.
[46]
Bestilny LJ, Brown CB, Miura Y, Robertson LD, Riabowol KT. Selective inhibition of telomerase activity during terminal differentiation of immortal cell lines. Cancer Res. 1996;56(16):3796-802.
[47]
Mata JE, Joshi SS, Palen B, Pirruccello SJ, Jackson JD, Elias N, Page TJ, Medlin KL, Iversen PL. A hexameric phosphorothioate oligonucleotide telomerase inhibitor arrests growth of Burkitt's lymphoma cells in vitro and in vivo. Toxicol Appl Pharmacol. 1997;144(1):189-97.
[49]
Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett. 1996;384(1):53-7.
[50]
Zoratti M, Szab? I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241(2):139-76.
[51]
Marchetti P, Susin SA, Decaudin D, Gamen S, Castedo M, Hirsch T, Zamzami N, Naval J, Senik A, Kroemer G. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res. 1996;56(9):2033-8.
[52]
Thornberry NA, Molineaux SM. Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death. Protein Sci. 1995;4(1):3-12.
[53]
Zamzami N, Susin SA, Marchetti P, Hirsch T, G?mez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183(4):1533-44.
[54]
Skulachev VP. [In its intermembrane space the mitochondrion hides the "suicide protein", which being released into cytosol causes apoptosis]. Biokhimiia. 1996;61(11):2060-3.
[55]
Inoue S. [Novel targets for cancer chemotherapy]. Gan To Kagaku Ryoho. 1996;23(2):191-201.
[56]
Tang DG, Porter AT. Target to apoptosis: a hopeful weapon for prostate cancer. Prostate. 1997;32(4):284-93.