Biopolym. Cell. 1985; 1(4):183-193.
Structure and Function of Biopolymers
Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes
1Semenkov Yu. P., 1Makarov E. M., 1Kirillov S. V.
  1. B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
    Gatchina, Leningrad distr., USSR


The association constants of deacylated tRNAPhe for the P site of 70S ribosomes were measured in the presence and absence of poly(U), and at different Mg2+ concentrations and temperatures. The numbers of Mg2+ ions involved in this interaction were determined: 4.4±0.3 (+poly(U) and 2.7±0.3 (–poly(U). The association constant of tRNAPhe for the A site was found to be 5·105M-1, much lower than that for the P site (2·109M–1), at 15 mM Mg2+, 200 mM NH4+ and 25 °C. The independence of the E-site binding of tRNAPhe on the messenger RNA was confirmed under these medium conditions. Based on the data obtained the affinity orders of aminoacyl-, peptidyl-tRNA and deacylated tRNA for the P, A and E sites are determined, and a possible mechanism of involvement of the E site in the translocation process is discussed.


[1] Rheinberger HJ, Nierhaus KH. Simultaneous binding of three tRNA molecules by the ribosome of Escherichia coli. Biochem Int. 1980; 1(4):297-303.
[2] Schreier MH, Noll H. Conformational changes in ribosomes during protein synthesis. Proc Natl Acad Sci U S A. 1971;68(4):805-9.
[3] Leder P. The elongation reactions in protein synthesis. Adv Protein Chem. 1973;27:213-42.
[4] Holschuh K, Schnerwitzki D, Schmitt M, Gassen HG. The peptidyl-substituent within peptidyl-tRNA increases the stability of tRNA--mRNA association. FEBS Lett. 1982;142(1):125-8.
[5] Peters M, Yarus M. Transfer RNA selection at the ribosomal A and P sites. J Mol Biol. 1979;134(3):471-91.
[6] Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981;78(9):5310-4.
[7] Fairclough RH, Cantor CR, Wintermeyer W, Zachau HG. Fluorescence studies of the binding of a yeast tRNAPhe derivative to Escherichia coli ribosomes. J Mol Biol. 1979;132(4):557-73.
[8] Kirillov SV, Makhno VI, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA. Nucleic Acids Res. 1980;8(1):183-96.
[9] Kirillov SV, Makhno VI, Semenkov IuP. Effect of the molecular weight of polyuridylic acid and the presence of ribosomal protein S1 on the stability of the complex of transport RNA with small ribosomal subunits. Dokl Akad Nauk SSSR. 1976;229(2):488-91.
[10] Zubay G. The isolation and fractionation of soluble ribonucleic acid. J Mol Biol. 1962; 4(5):347-56.
[11] Semenkov YP, Makhno VI, Kirillov SV. Isolation and study of some properties of the highly active 30S and 50S Escherichia coli ribosomal subunits. Mol Biol (Mosk). 1976;10(4):620-8.
[12] Kemkhadze KS, Odintsov VB, Semenkov YP, Kirillov SV. Quantitative study of the interaction of aminoacyl-tRNA with the a site of Escherichia coli ribosomes: equilibrium and kinetic parameters of binding in the absence of EF-Tu factor and GTP. FEBS Lett. 1981;125(1):10-4.
[13] Holmes WM, Hurd RE, Reid BR, Rimerman RA, Hatfield GW. Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc Natl Acad Sci U S A. 1975;72(3):1068-71.
[14] Rappoport S, Lapidot Y. The chemical preparation of acetylaminoacyl-tRNA. Methods Enzymol. 1974;29:685-8.
[15] Grajevskaja RA, Ivanov YV, Saminsky EM. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982;128(1):47-52.
[16] Gillam IC, Tener GM. The use of BD-cellulose in separating transfer RNA's. Methods Enzymol. 1971; 20(part C):55-70.
[17] Kirillov SV, Makarov EM, Semenkov YuP. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983;157(1):91-4.
[18] Rheinberger HJ, Schilling S, Nierhaus KH. The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. Eur J Biochem. 1983;134(3):421-8.
[19] Kirillov SV, Semenkov YuP. Non-exclusion principle of Ac-Phe-tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes. FEBS Lett. 1982;148(2):235-8.
[20] Kirillov SV, Makhno VI, Odinzov VB, Semenkov YP. The mechanism of codon-anticodon interaction in ribosomes. Heterogeneity of tRNA complexes with 70-S ribosomes of Escherichia coli. Eur J Biochem. 1978;89(1):305-13.
[21] Gefter ML, Russell RL. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969;39(1):145-57.
[22] Noll M, Noll H. Structural dynamics of bacterial ribosomes. V. Magnesium-dependent dissociation of tight couples into subunits: measurements of dissociation constants and exchange rates. J Mol Biol. 1976;105(1):111-30.
[23] Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 1972;67(3):443-57.
[24] Wurmbach P, Nierhaus KH. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. Proc Natl Acad Sci U S A. 1979;76(5):2143-7.
[25] Kemkhadze KSh, Odintsov VB, Makhno VI, Semenkov IuP, Kirillov SV. Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP]. Mol Biol (Mosk). 1981;15(4):779-89.
[26] Kirillov SV, Kemkhadze KS, Makarov EM, Makhno VI, Odintsov VB, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes: codon-anticodon interaction of aminoacyl-tRNA at the ribosomal donor site. FEBS Lett. 1980;120(2):221-4.
[27] Semenkov YuP, Makarov EM, Makhno VI, Kirillov SV. Kinetic aspects of tetracycline action on the acceptor (A) site of Escherichia coli ribosomes. FEBS Lett. 1982;144(1):125-9.
[28] Holschuh K, Riesner D, Gassen HG. Steps of mRNA translocation in protein biosynthesis. Nature. 1981;293(5834):675-7.
[29] Harris R, Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes. J Biol Chem. 1973;248(4):1168-74.
[30] Pestka S, Vince R, Daluge S, Harris R. Effect of puromycin analogues and other agents on peptidyl-puromycin synthesis on polyribosomes. Antimicrob Agents Chemother. 1973;4(1):37-43.
[31] Kukhanova M, Streltsov S, Victorova L, Azhayev A, Gottikh B, Krayevsky A. The donor site of the peptidyltransferase center of ribosomes: equilibrium association constants of model substrates and inhibitors. FEBS Lett. 1979;102(1):198-203.
[32] Krayevsky AA, Kukhanova MK. The peptidyltransferase center of ribosomes. Prog Nucleic Acid Res Mol Biol. 1979;23:1-51.
[33] Bourd S, Victorova L, Kukhanova M. On substrate specificity of the donor site of the Escherichia coli ribosomal peptidyl transferase center. Synthesis of dipeptides from 3'-terminal fragments of aminoacyl-tRNA. FEBS Lett. 1982;142(1):96-100.
[34] Kirillov SV Mechanism of codon-anticodon interaction in ribosomes. In the book.: Results of science and technology. VINITI (Seria Biol. Chemistry; T. 18), 1983, p. 5-98.
[35] Gouy M, Grantham R. Polypeptide elongation and tRNA cycling in Escherichia coli: a dynamic approach. FEBS Lett. 1980;115(2):151-5.
[36] Noll H. Chain initiation and control of protein synthesis. Science. 1966;151(3715):1241-5.
[37] Rheinberger HJ, Nierhaus KH. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983;80(14):4213-7.
[38] Nirenberg M, Leder P. RNA codewords and protein synthesis. the effect oftrinucleotides upon the binding of sRNA to ribosomes. Science. 1964;145(3639):1399-407.