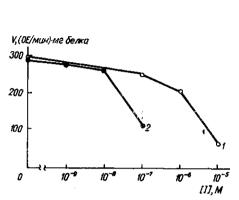
Л. Б. Бондаренко, О. В. Харченко, И. А. Бутович

ВИТАМИН D_3 И 1,25-ДИОКСИВИТАМИН D_3 — ИНГИБИТОРЫ 5-ЛИПОКСИГЕНАЗЫ

Установлено, что витамин D_3 и его гормонально активная форма 1,25- $(OH)_2D_3$ инсибируют активность 5-липоксигеназы из клубней картофеля. Подобного влияния данных веществ на активность 15-липоксигеназы соевых бобов не выявлено. Ингибирующий эффект обоих соединений зависит от концентрации субстрата.

Введение. Витамин D₃ и его гормонально активная форма 1,25-диоксивитамин D₃ помимо поддержания гомеостаза Са и Р в организме способны воздействовать на процессы пролиферации и дифференциации клеток [1], оказывая иммуномодулирующее действие. Такой эффект не опосредован предварительным запуском синтеза кальцийсвязывающего белка и механизм его окончательно не ясен. Исследования последних лет показали, что метаболиты витамина D₃ могут регулировать активность ферментов, встроенных в мембраны, и транспорт Са через мембраны [2]. Эти соединения изменяют структуру жирнокислых остатков фосфолипидов мембраны и увеличивают текучесть последней [2]. В культуре хондроцитов 1,25-(OH) $_2$ D $_3$ и 24,25-(OH) $_2$ D $_3$ регулировали обмен арахидоновой кислоты по различным механизмам. Воздействие 1,25-(OH)₂D₃ на хондроциты зоны роста проявлялось в течение 5 мин. При этом включение арахидоновой кислоты в фосфолипиды достигало максимума через 1 ч, а высвобождение — через 30 мин. 24,25-(OH)₂D₃ стимулировал постепенное повышение включения после некоторого инкубационного периода. Его максимум достигался через 15 мин, а максимум высвобождения — через 1 ч.

В свою очередь метаболиты арахидоновой кислоты также способны регулировать обмен витамина D_3 [3]. Добавление лейкотриена C_4 в концентрации 10^{-6} M увеличивает синтез 1,25- $(OH)_2D_3$ альвеолярными макрофагами на 234 %. Помимо прямого эффекта на витамин D_3 и его производные возможно и опосредованное влияние C_4 на их метаболизм. Арахидоновая кислота вызывает мобилизацию C_4 и уже в концентрации C_4 мк C_4 повышает его содержание в цитозоле в C_4 раза [4]. При этом ни одна из других жирных кислот такой активностью не обладала.


Важная роль лейкотриенов (липоксигеназных метаболитов арахидоновой кислоты) в развитии воспалительных и аллергических процессов [5] и способность производных витамина D_3 оказывать иммуномодулирующее действие [1] обусловили важность выяснения возможного влияния витамина D_3 и 1,25- $(OH)_2D_3$ на ключевой фермент биосинтеза лейкотриенов — 5-липоксигеназу. В связи с трудностями выделения этого фермента из клеток животных для исследований использовали 5-липоксигеназу картофеля.

Материалы и методы. В работе использованы следующие реактивы: 5-липоксигеназа из клубней картофеля, выделенная по модифицированному методу Шимизу [6, 7], 15-липоксигеназа из соевых бобов («Fluka», Швейцария), линолевая кислота и луброл РХ («Sigma», США), витамин D₃ (спиртовый раствор), 1,25-диоксивитамин D₃ (масляный раствор) («Hoffmann — La-Roche», Швейцария), неорганические кислоты, щелочи и соли марки х. ч.

Витамин D_3 вводили в дозах, обеспечивающих его конечную концентрацию в пробах 10^{-7} , 10^{-6} , 10^{-5} M (обычно применяемых при работе с культурами тканей и системами *in vitro* [1]); 1,25-(OH) $_2D_3$ — 10^{-9} , 10^{-8} и 10^{-7} M [1]. В контроли добавляли соответствующее количество чистого растворителя.

Скорость ферментативного окисления линолевой кислоты 5-липоксигеназой и 15-липоксигеназой определяли спектрофотометрически по возрастанию оптической плотности реакционной смеси в области 235 им. Объем смеси составлял 2,5 мл [6, 8].

Результаты и обсуждение. Приведенные в табл. 1 и на рис. 1 данные свидетельствуют о том, что витамин D_3 и его гормонально активная форма способны оказывать заметный ингибирующий эффект на 5-липоксигеназу картофсля при оптимуме ее рН (6, 3). Как и следовало ожидать, гормонально активная форма D_3 оказывала более силь-

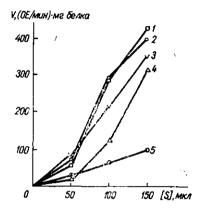


Рис. 1. Влияние витамина D_3 и 1,25- $(OH)_2D_3$ на активность 5-липоксигеназы картофеля: I — витамин D_3 ; 2 — 1,25- $(OH_2)D_3$

Рис. 2. Зависимость ингибирующего эффекта витамина D_3 и $1,25 \cdot (OH)_2D_3$ на активность 5-липоксигеназы картофеля от концентрации субстрата: I — контроль с оливковым маслом; 2 — контроль со спиртом; 3 — витамин D_3 $(10^{-6}\ M);\ 4$ — $1,25 \cdot (OH)_2D_3$ $(10^{-7}\ M);\ 5$ — витамин D_3 $(10^{-5}\ M)$

ное воздействие на фермент по сравнению с самим витамином в такой же концентрации. 1,25- $(OH)_2D_3$ $(10^{-7}\ M)$ в 2 раза сильнее ингибировал активность 5-липоксигеназы, чем витамин D_3 $(10^{-7}\ M)$. Наиболее сильным ингибирующим действием как для 1,25- $(OH)_2D_3$, так и для витамина D_3 отличались их максимально возможные дозы. Большая активность 1,25- $(OH)_2D_3$, чем витамина D_3 , возможно, связана и с присутствием двух дополнительных OH-групп в его молекуле по сравнению с витамином.

Результаты анализа вероятной зависимости эффекта ингибирования витамином D_3 и 1,25- $(OH)_2D_3$ 5-липоксигеназы картофеля от концентрации субстрата (линолевой кислоты) приведены на рис. 2. Полученные данные свидетельствуют о наличии определенной зависимости степени ингибирования от концентрации субстрата.

T аблица 1 Кратность снижения активности 5-липоксигеназы в присутствии витамина D_3 и 1.25- $(OH)_2D_3$ при различных дозах

Доза, М	Ингибитор		
	1,25-(OH) ₂ D ₃	Витамин D ₃	
10-9	1,03	_	
10	1,05		
108	2,36	1,16	
10 - 2	_	1,45	
10^{-6}	_	4.83	

T аблица 2 Влияние витамина D_3 и $1.25 \cdot (OH)_2 D_3$ на активность 15-липоксигеназы соевых бобов

	Показатель	
Проба	Удельная активность, (ОЕ/мин) мг белка	Ингибиро- вания, %
Контроль (спирт) Витамин D ₃ (10 ⁻⁵ M)	1600 1600	0
Контроль (масло) 1,25-(OH) ₂ D ₃ (10 ⁻⁷ M)	1150 1100	4

«---» --- измерений не проводили.

Аналогичное изучение воздействия витамина D₃ и 1,25-(OH)₂D₃ на 15-липоксигеназу сои показало отсутствие ингибирующего эффекта даже при максимальных дозах исследуемых веществ (табл. 2).

Таким образом, нашими исследованиями установлена способность витамина D_3 и 1,25- $(OH)_2D_3$ ингибировать активность 5-липоксигеназы, но не 15-липоксигеназы. Эффект ингибиторов, по-видимому, зависит от концентрации субстрата.

Summary. The influence of vitamin D₃ and 1,25-(OH)₂D₃ on the activity of potato 5-lipoxygenase and soy beans 15-lipoxygenase was examined. The inhibitory effect of these compounds on 5-lipoxygenase was established but not 15-lipoxygenase, 1,25-(OH)₂D₃ was stronger as an inhibitor then vitamin D₃. Inhibitory effect of both compounds depended on dose of substrate (linoleic acid).

СПИСОК ЛИТЕРАТУРЫ

Бауман В. К. Бнохимия и физиология витамина D.— Рига: Зинатне, 1989.—480 с.
 Regulation of arachidonic acid turnover by 1,25-(OH)₂D₃ and 24,25(OH)₂D₃ in grouth zone and resting zone chondrocyte cultures / Z. Schwartz, L. D. Swain, V. Ramirez, B. D. Boyan // Biochim. et biophys. acta.—1990.—1027, N 3.— P. 278—287.
 A role for endogenous arachidonate metabolites in the regulated expression of the 25-hydroxyvitamin D-I-hydroxylation reaction in cultured alveolar macrofages from patients with a residence of the contraction.

patients with sarcoidosis / J. S. Adams, M. A. Gacad, M. M. Diz, J. L. Nadler // J. Clin. Endocrinol. and Metab.—1990.—70, N 3.— P. 595—600.

4. Alila H. W., Corradino R. A., Hansel W. Arachidonic acid and its metabolites increase cytosolic free calcium in bovine luteal cells // Prostaglandins.—1990.—39, N 5.— P. 481—496.

5. Bailey D. M., Casey F. B. Lipoxygenase and the related arachidonic acid metabolites // Ann. Rept. Med. Chem.—1982.—17.— Р. 203—217.
6. Активизация окисления линолевой кислоты 5-липоксигеназой из клубней картофеля

под влиянием фосфатидовой кислоты / И. А. Бутович, В. М. Бабенко, Л. В. Ливарчук и др. // Биохимия.—1991.—56, № 6.— С. 1077—1081.

7. Бутович И. А., Бридня В. П., Кухарь В. П. Линолеатгидроксамовая кислота—суицидный ингибитор липоксигеназы // Биохимия.—1990.—55, № 7.—С. 1211—1221.

Ин-т биоорг. химии и нефтехимии АН Украины, Киев

Получено 05.03.92