5

Cmpykmypa и функция биополимеров

УДК 577.113

А. Н. Веселков, Д. Дэвис, Л. Н. Дымант, Х. Паркес, Д. Шинл

1М- и 2М-¹Н-ЯМР-ИССЛЕДОВАНИЕ САМОАССОЦИАЦИИ ДЕЗОКСИТЕТРАРИБОНУКЛЕОЗИДТРИФОСФАТОВ РАЗЛИЧНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ОСНОВАНИЙ В ВОДНОМ РАСТВОРЕ

Методом ИМР-спектроскопии (500 МГц) изучено равновесие самокомплементарных дезокситетрарибонуклеозидтрифосфатов 5'-d(GpCpGpC), 5'-d(CpGpCpG), 5'-d(ApCpGpT) и 5'-d(ApCpGpT) в водном растворе. Произведено полное отнесение сигналов протонов тетрануклеотидов по измеренным 2M-COSY- и 2M-NOESY-спектрам. Исследованы концентрационные и температурные зависимости протонных химических сдвигов, на основании которых по предложенным моделям рассчитаны равновесные константы и термодинамические параметры самоассоциации молекул.

Введение. Известно, что многие биологически активные ароматические соединения при взаимодействии с ДНК преимущественно связываются с определенными последовательностями оснований в цепи. Однако сложность строения и конформационная изменчивость полимерных молекул нуклеиновых кислот ограничивают возможности детального анализа роли тех или иных физических взаимодействий в стабилизации молекулярных структур в растворе. Вместе с тем экспериментально установлено, что специфичность связывания ароматических лигандов проявляется уже на коротких нуклеотидных последовательностях, включающих в себя соответствующий сайт. Так, антибиотик актиномицин D преимущественно взаимодействует с GC-сайтом, в то время как бромистый этидий и профлавин — с пиримидин-пуриновой последовательностью оснований [1-4]. Следсьательно, важные энергетические и структурные характеристики комплекса лигандов с нативной ДНК могут быть выявлены путем изучения их взаимодействия с малыми фрагментами нуклеиновых кислот — самокомплементарными олигонуклеотидами заданной последовательности оснований. При интерпретации экспериментальных результатов следует учитывать, что в растворе, особенно в случае коротких олигонуклеотидов, имеет место сложное равновесие взаимодействующих молекул, включающее в себя и различные конформационные состояния олигонуклеотидных цепей. В связи с этим важным представляется непосредственное исследование поведения в растворе самокомплементарных олигонуклеотидов с различными последовательностями оснований в цепи, нахождение структурных и энергетических характеристик их самоассоциации.

Наиболее эффективным экспериментальным методом исследования конформации олигонуклеотидов в растворе является ЯМР-спектроскопия. Развитие в последнее время методик двухмерного (2M) ЯМР открыло новые возможности для изучения в растворе молекулярных структур олигонуклеотидов как в дуплексной, так и мономерной фор-

© А. Н. ВЕСЕЛКОВ, Д. ДЭВИС, Л. Н. ДЫМАНТ, Х. ПАРКЕС, Д. ШИПП, 1991

мах [5—7]. Следует отметить, что количественная интерпретация структурных характеристик олигомеров по данным 2M-ЯМР связана с проблемой конформационной чистоты в растворе. Обычно в работах предполагается, что олигонуклеотид существует в растворе только в дуплексной форме в виде единственного конформера. Однако это далеко не очевидно, особенно для рассматриваемых коротких нуклеотидных последовательностей.

2D NOESY d<ACGT>

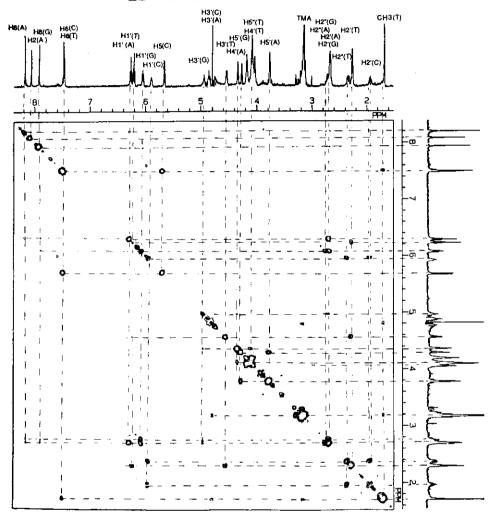
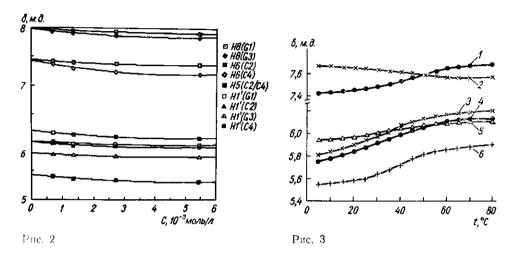


Рис. 1


В настоящей работе проведено исследование самоассоциации в водном растворе дезокситетрануклеотидов d(GpCpGpC), d(CpGpCpG), d(ApGpCpT) и d(ApCpGpT), имеющих различную локализацию GC- и CG-сайтов в цепи. Изучены концентрационные и температурые зависимости протонных химических сдвигов дезокситетрануклеотидов для определения равновесных констант и термодинамических параметров самоассоциации молекул в водном растворе. Данные гомоядерной корреляционной двухмерной ЯМР-спектроскопии (2M-COSY и 2M-NOESY) использованы для полного отнесения сигналов в спектре 'H-ЯМР олигонуклеотидов.

Материалы и методы. Дезокситетрарибонуклеозидтрифосфаты d(GpCpGpC), d(CpGpCpG), d(ApGpCpT), d(ApCpGpT) синтезированы компанией «OSWEL DNA SERVICE» (Великобритания). Образцы

использовали без дополнительной очистки, трижды лиофилизовали из D_2O с изотопной чистотой 99,95 % и растворяли в 0,1 M фосфатном буфере в D_2O (pD 6,6). Спектры 1H -ЯМР измерены на импульсном спектрометре JEOL GSX-500 с резонансной частотой 500 МГц в магнитном поле сверхпроводящего соленоида 11,7 Тл с применением фурье-преобразования. Остаточный сигнал НОО насыщался в период летектирования. Химический сдвиг определяли относительно внутреннего стандарта DSS. Для контроля использовали также сигнал ТМА (бромидтетраметил аммония), так как он меньше других стандартов зависит от t и pH в водных растворах нуклеотидов. Измерения вели в стандартных ампулах с внешним диаметром 5 мм, минимальный объем раствора 0,5 мл. Образцы предварительно дегазировали продувкой азотом (20-30 мин). Отнесение сигналов в спектрах ¹Н-ЯМР, отождествление химических и пространственных связей проводили с помощью двухмерных 2M-COSY-спектроскопии корреляции химических сдвигов через гомоядерное скалярное спин-спиновое взаимодействие и 2М-NOESY-спектроскопии корреляции химических сдвигов через гомоядерную кросс-релаксацию соответственно. Спектры 2M-NOESY регистрировали с использованием стандартной последовательности импульсов при ширине спектра $SW = 10\,000$ Гц, 2048 точек в период дстектирования (t_2) , 512 приращений времени эволюции (t_1) и при фиксированном времени смешивания $\tau_m = 300$ мс. Спектры 2M-COSY измеряли, исполь-3уя 2048 точек в t_2 и 256 приращений в t_1 . Период восстановления составлял 1 с для 2M-COSY и 3 с для 2M-NOESY-спектроскопии. Для увеличения чувствительности импульсную последовательность при каждом значении повторяли 16 и 32 раза для 2M-COSY и 2M-NOESY экспериментов соответственно. Температуру образцов поддерживали с помощью JEOL NM-GVT3-терморегулятора.

Результаты и обсуждение. Отнесение сигналов в спектре ПМР тетрануклеотидов проведено на основании двухмерных гомоядерных COSY- и NOESY-экспериментов. На рис. 1 представлен полученный нами 2M-NOESY-спектр для АрСрGрТ последовательности (0,1 M фосфатный буфер в D_2O при T = 293 K). Спектры 2M-COSY использовали для выявления протонов, связанных І-взаимодействием и принадлежащих отдельному дезоксирибозному кольцу, а также для идентификации необменивающихся протонов по J (H5, H6)- и J (CH3, H6)-корреляциям в основаниях цитозинов и тиминов. Известно, что 2M-COSY не позволяет определить, какие сигналы протонов сахарного кольца и нуклеотидного основания относятся к отдельному нуклеозиду и в каком порядке углеводные остатки связаны в олигомерную цепь. Такая информация получена из анализа 2M-NOESY-спектров путем рассмотрения кросс-пиков между ароматическими протонами оснований и сигналами Н1', Н2' и П2" дезоксирибозы. Связи между различными протонами показаны на рис. 1 и 2 пунктирными линиями. Отнесение протонов H2' и H2" сделано из NOESY-спектров на основании того факта, что интенсивность Н1' - Н2" кросс-пиков выше, чем интенсивность соответствующих Н1' — Н2' пиков [8]. В табл. 1 представлены полученные в результате отнесения сигналов значения химических сдвигов для всех необменивающихся протонов анализируемых тетрануклеотидов. В работе [4] имеются данные по химическим сдвигам ароматических протонов последовательности d(ApGpCpT), в [9] сделано отнесение сигналов необменивающихся протонов в октамере 5'-d(ApCpGpCpGpCpGpT), в котором первые три нуклеотида соответствуют рассматриваемому тетрамеру 5'-d (АрСрGрТ), а концевой тимидин примыкает, так же как и в тетрамере, к гуанозину. Сравнение значений протонных химических сдвигов, приведенных в табл. 1, с данными работ [4] и [9] показывает их хорошее соответствие. Величины химических сдвигов протонов тетрамера 5'-d(GpCpGpC) согласуются с опубликованными ранее результатами для соответствующих протонов гексамера d(GpCpApTpGpC) [10], в котором внешние гуанозин и цитозин находятся в аналогичных условиях с рассматриваемым тетрануклеотидом, а внутренний цитозин фланкирован двумя пуриновыми основаниями (GCA) и соответствующий гуанин — двумя пиримидиновыми основаниями (TGC), как в d(GpCpGpC). Что касается отнесения сигналов протонов для тетрануклєотида d(CpGpCpG), то оно практически совпадает с результатами, приведенными в работе [11] для аналогичного олигонуклеотида.

На рис. 3 в качестве примера представлены концентрационные зависимости химических сдвигов ароматических протонов и протонов H1'

дезоксирибозы тетрануклеотида 5'-d(GpCpGpC) при температуре T = 278 K. Для большинства протонов исследованных тетрануклеотидов наблюдается смещение химического сдвига в область сильного поля при увеличении концентрации тетрануклеотидов. Более выраженная зависимость меет место для протонов внутрепних нуклеозидов.

Полученные в [8] методом спектрофетометрии экспериментальные результаты свидетельствуют о кооперативном плавлении олигомеров подобного типа. Отметим, что НМР дает, в отличие от других спектроскопических методов, информацию о каждом основании в олигонуклеотидной цепи. Однако для получения ЯМР-сигнала достаточной интенсивности требуются относительно высокиє копцентрации образца, при

T а б л и ц а 1 Отнесение ЯМР-сигналев препенев севекситет регивенуклеозивфосфатов 5'-d АрСрбрТ), 5'-d (АрбрСрТ) (T=293 K, C=2,4· 10^{-3} моль нитей/ π) и 5'-d (GpСрбрС) (T=298 K, C=5,4· 10^{-3} моль нитей/ π)

Нукл ео - зид	Химический сдвиг, м. д.										
	118	H6/H2	н	Н1	112	H2	Н3	H4	H5	Н5	СН3
5′-A C G T	8,20 -7,94	8,09 7,48 7,50	5,68 —	6,28 5,92 6,07 6,23	2,68 1,95 2,70 2,28	2,72 2,37 2,74 2,31	4,87 4,87 4,96 4,57	4,29 4,20 4,37 4,05	3,78 4,12 4,12 4,08	3,78 4,12 4,12 4,08	_ _ _ 1,95
5′-A G C T	8, 0 5 7,94 —	8,04 7,59 7,60	5,62	6,25 6,09 5,90 6,18	2,32 2,42 2,66 2,26	2,53 2,64 2,70 2,52	4,56 4,86 5,01 4,77	4,11 4,24 4,40 4,30	3,72 3,72 4,14 4,07	3,72 3,72 4,14 4,07	_ _ 1,78
5′-G C G C	7,94 7,91 —	7,43 7,39	_	5,97		2,77 2,42 2,72 2,24	4,86 4,88 5,00 4,51	4,27 4,24 4,38 4,07	3,73 4,16 4,13 4,27	3,73 4,16 4,13 4,23	

^{*}Химические сдвиги приведены относительно стандарта DSS.

которых повышается вероятность агрегации молекул в растворе. Поскольку агрегация усложняет интерпретацию ЯМР-спектра, целесообразно проводить эксперимент при условиях, когда она оказывает пренебрежимо малое влияние на значения химических сдвигов протонов. Известно, что вероятность агрегации зависит от ионной силы, температуры раствора, концентрации и молекулярной массы олигомера. Исследования, проведенные в [12], дают основание считать, что при использованных в настоящей работе концентрациях тетрануклеотидов и ионной силе 0,1 М Na+ агрегация несущественна. Таким образом, взаимодействие молекул тетрануклеотидов можно рассматривать в соответствии с моделью двух состояний:

$$N + N \stackrel{K_A}{\longleftrightarrow} N_2. \tag{1}$$

В таком случае зависимость наблюдаемого химического сдвига протонов тетрануклеотидов от концентрации C представляется в форме:

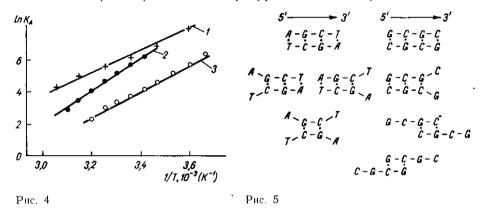
$$\delta = \delta_d + (\delta_d - \delta_m) \{ [1 + (8K_AC + 1)^{1/2}]/4K_AC \}, \tag{2}$$

где δ_d , δ_m — протонные химические сдвиги в дуплексе и мономерной форме соответственно. Величины δ_d , δ_m , K_A , неизвестные a priori, могут быть найдены как параметры модели [2] по экспериментальным концентрационным зависимостям наблюдаемых химических сдвигов протонов из условия минимизации взвешенной суммы квадратов невязок δ_{si} и δ_i , где δ_{si} — экспериментальные, δ_i — рассчитанные по [2] значения химических сдвигов при i-й концентрации соответствующего тетрануклеотида [13, 14]. Подобные расчеты выполнены для всех необменивающихся протонов оснований и протонов H1' дезоксирибозных колец тетрануклеотидов.

Согласно модели реакции (1), параметр K_A является равновесной константой образования дуплекса и должен быть одинаковым для всех протонов каждого тетрануклеотида. Усредненные значения этого параметра для исследованных тетрануклеотидов приведены в табл. 2. Полученные значения констант реакции для 5'-d (GpCpGpC) и 5'-d (CpGpCpG) примерно на два порядка превышают величины K_A самоассоциации динуклеотидов 5'-GC и 5'-CG [15]. Для тетрануклеотидов, имеющих менее стабильные концевые пары (A — T), константа самоассоциации значительно ниже, чем K_A для тетрамеров, имеющих в последовательности только G — С-пары. Оценки показывают, что при таких значениях K_A и концентрациях тетрануклеотидов $\sim 10^{-3}$ моль/л доля молекул в растворе в дуплексной форме составляет ~ 50 % для первых двух тетрамеров и ~ 20 % для A — T-содержащих тетрануклеотидов (см. табл. 2).

Для определения термодинамических параметров реакций самоассоциации тетрануклеотидов проведены исследования зависимостей протонных химических сдвигов от температуры. На рис. 4 приведены температурные зависимости химических сдвигов 5'-d(CpGpCpG) при $C=1,93\cdot 10^{-3}$ моль нитей/л для различных протонов (I-H6) (C3); 2-H6 (C1); 3-H1' (C3); 4-H1' (C1); 5-H1' (G2); 6-H5 (C3)). В расчетной схеме зависимость наблюдаемого химического сдвига δ

Таблица 2 Значения равновесных констант K_A и термодинамических параметров ΔG , ΔH и ΔS реакции самоассоциации тетрануклеотидов при температуре $T{=}293~K$


Нуклеозид	K_A , л/моль дупле- кса	ΔG, ккал/моль дуплекса	ΔΗ, ккал/моль дуплекса	ΔS, ккал/ (К∙моль дупле- кса)
d (GpCpGpC)	1150±120	-4,10 $-4,17$ $-2,95$	-30,0	88
d (CpGpCpG)	1300±160		-41,4	127
d (ApGpCpT)	160± 30		-31,7	98

от температуры Т была представлена в виде

$$\delta(T_j) = \delta_m(T_j) \cdot f_m(T_j) - \delta_d f_d(T_j), \tag{3}$$

где $f_m(T_i)$ и $f_d(T_i)$ — равновесные мольные доли тетрануклеотида при температуре T_i в мономерной и дуплексной формах $(f_m + f_d = 1)$.

В соотношении (3) предполагается, что δ_m является функцией температуры. Действительно, расчеты по концентрационным зависимостям химических сдвигов протонов тетрануклеотида 5'-d (GpCpGpC), измеренным при температурах 278 и 298 K, показали заметное изменение величин δ_m при вариации температуры. Это подтверждается также

сравнением расчетных значений δ_m с экспериментальными значениями протонного химического сдвига при высокой температуре ($T=353\div 358$ K), когда можно считать, что все молекулы в растворе находятся в мономерной форме. Такая зависимость δ_m от температуры свидетельствует о конформационных изменениях молекул тетрануклеотидов в мономерной форме, связанных, в частности, с изменением внутримолекулярного стэкинга. Следует отметить, что температурная зависимость δ_m наблюдалась и для динуклеотидных последовательностей 5'-GC и 5'-CG [16]. Что касается химического сдвига δ_d , то эта величина, как показали расчеты, практически неизмениа в исследованном диапазоне температур.

Для описания температурной зависимости $f_m(T)$ использовано регрессионное уравнение второго порядка относительно температуры [16]

$$f_m(T) = f_m^1 + \alpha (T_0 - T) (T_1 - T) + \frac{f_m^0 - f_m^1}{T_0 - T_1} (T - T_1) \frac{T}{T_0}, \qquad (4)$$

в котором f_m^0 и f_m^1 — известные значения мольных долей мономера в растворе при заданных температурах T_0 и T_1 . Мольную долю f_m^1 определяли по расчетному значению K_A , найденному из концентрационных зависимостей при T_1 =293 K, f_m^0 полагалась равной 1 при T_0 =353 K, когда можно считать, что произошло полное расхождение нитей тетрануклеотидов. Параметр a находили из условия минимизации функции невязки экспериментальных и рассчитанных значений химического сдвига при различных температурах. При проведении расчетов использована линейная аппроксимация $\delta_m(T)$ по известным значениям δ_m при двух температурах, как это обычно делается в подобных случаях [8, 16, 17]. Численную процедуру мивимизации функции невязки выполняли с помощью симплексного метода Нелдера — Мида [18]. Равновесные константы K_A при различных температурах определяли по значениям мольных долей $f_m(T_i)$:

$$K_A(T_j) = \frac{1 - f_m(T_j)}{2f_m^2(T_j) \cdot C}$$
 (5)

На рис. 5 приведены зависимости Вант — Гоффа $\ln K_A = \psi(1/T)$, использованные для оценки энтальпии ΔH и энтропии ΔS реакций образования дуплексов тетрануклеотидов $(I-5'-d(GpCpGpC);\ 2-5'-d(CpGpCpG);\ 3-5'-d(ApGpCpT))$. Данные достаточно хорошо аппроксимируются прямыми линиями, что свидетельствует о пренебрежимо малом изменении теплоемкости в рассмотренном температурном интервале. Энтальпии реакций рассчитывали по величине тангенсов углов наклонов аппроксимирующих прямых в соответствии с соотношением Вант — Гоффа

$$\frac{d\left(\ln K_A\right)}{d\left(1/T\right)} = -\frac{\Delta H}{R} \ . \tag{6}$$

Изменение энтропии ΔS находили из свободной энергии Гиббса $\Delta G = -RT \ln K_A$ и найденного значения ΔH :

$$\Delta S = -(\Delta G - \Delta H)^{T}. \tag{7}$$

Определенные таким образом значения термодинамических параметров ΔH , ΔG , ΔS см. в табл. 2. Сравнение результатов подтверждает роль состава и последовательности оснований в олигонуклеотидной цепи в стабилизации спиральных структур. Наиболее стабильным дуплексом среди исследованных тетрануклеотидных последовательностей является 5'-d(СрGрСрG)2. Если использовать калориметрические данные по термической стабильности пар — известные значения $\Delta H_{\rm AT}$ и ΔH_{GC} с учетом зависимости ΔH от ионной силы раствора [19, 20], то для тетрануклеотидов d(GpCpGpC) и d(ApGpCpT) изменения энтальнии при реакции самоассоциации и участии всех пар в образовании дуплекса («идеальный» дуплекс) должны быть по абсолютной величине несколько выше найденных в настоящей работе значений ΔH . Одна из причин такого расхождения между экспериментально найденными значениями ΔH и соответствующими расчетными значениями для «идеалького» дуплекса может быть связана с плавлением концевых пар в столь коротком дуплексе, а также со «скольжением» комплементарных нитей относительно друг друга, так что в растворе в равновесном состоянии находятся различные спиральные структуры (рис. 6: вероятные спиральные структуры в растворе для тетрануклеотидов 5'-d (ApGpCpT) и 5'-d(GpCpGpC): «--» — сахарофосфатные цепи, «·» — водородные связи между парами оснований). Для тегрануклеотида 5'-d(CpGpCpG) ввиду его большей стабильности образование подобных структур менее вероятно, о чем свидетельствуют и высокие абсолютные значения ΔH и ΔS .

Полученные нами ранее [15] значения ΔH для самоассоциации 5'-GC и 5'-CG динуклеотидов составили \simeq —14 ккал/моль. При самоассоциации тетрануклеотидов величины ΔH изменяются более чем в два раза по сравнению с динуклеотидами, что свидетельствует о появлении дополнительных факторов, в частности, стэкинг-взаимодействия и конформационных изменений.

Резюме

Методом ПМР-спектроскопії (500 МГц) вивчено рівноважне поводження самокомплементарних дезокситетрарибонуклеозидтрифосфагів 5'-d (GpCpGpC), 5'-d (CpGpCpG), 5'-d (ApGpCpT) та 5'-d (ApCpGpT) у водному розчині. Здійснено повне віднесення сигналів протонів тетрануклеотидів по виміряних 2M-COSY- та 2M-NOESY-спектрах. Досліджені концентраційні та температурні залежності протонних хімічних зсувів дезокситетрануклеотидів. Розраховані рівноважні константи самоасоціації та значення протонних зсувів в мономірній і дуплексній формах тетрамірів з використанням моделі двох станів. Запропоновано методику розрахунку та визначено термодинамічні параметри реакції самоасоціації молекул. Проведено порівняльний аналіз розрахованих характеристик для самоасоціації тетрануклеотидів різної послідовності.

Equilibrium behaviour of self-complementary deoxytetranucleoside triphosphates 5'd(GpCpGpC), 5'-d(CpGpCpG), 5'-d(ApGpCpT) and 5'-d(ApCpGpT) in aqueous solution have been studied by the method of PMR spectroscopy (500 MHz). Assignments of the tetranucleotides protons have been obtained from both two-dimensional homonuclear COSY and NOESY experiments. Concentration and temperature dependences of proton chemical shifts have been investigated. Equilibrium association constants and thermodynamical parameters of molecules self-association have been calculated using theoretical models and regression equations based on experimental results.

СВИСОК ЛИТЕРАТУРЫ

- Krugh T. R., Reinhardt C. G. Evidence for sequence preferences in the intercalative binding of ethidium bromide to dinucleoside monophosphates // J. Mol. Biol.—1975.—97, N 1.—P. 133—162.
 Patel D. J., Canuel L. L. Sequence specificity of mutagen-nucleic acid complexes in
- solution // Proc. Nat. Acad. Sci. USA. 1977.— 74.— P. 2624—2628.

 3. ¹H and ³¹P NMR investigations of actinomycin D binding selectivity with oligodeo-

- 3. If and 31P NMR investigations of actinomycin D binding selectivity with oligodeoxyribonucleotides containing multiple adjacent d(GC) sites/E. V. Scott, R. L. Jones, D. L. Banville et al. // Biochemistry.—1988.—27, N 3.—P. 915—923.
 4. Reid D. G., Salisburg S. A., Williams D. H. Proton nuclear Overhauser effect study of the structure of an actinomycin D complex with a self-complementary tetranucleoside triphosphate//Ibid.—1983.—22, N 6.—P. 1377—1385.
 5. Clore G. M., Gronenborn A. M. Internal mobility in a double-stranded B DNA hexamer and undecamer//FEBS Lett.—1984.—172, N 2.—P. 219—225.
 6. Sequence-dependent structural variation in single-helical DNA proton NMR studies of d-(T-A-T-A) and d-(A-T-A-T) in aqueous solution/M. R. Mellema, J. M. L. Picters, G. A. van der Marel et al. // Eur. J. Biochem.—1984.—143—P. 285—301.
 7. Conformational studies of d-(m⁵CpGpm⁵CpG) and d-(CpGpCpG) 111 and 31P NMR/M. Delepierre, B. L. Destaintot, J. Igolen, B. P. Roques//Ibid.—1986.—161.—P. 571—577.
- 8. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix
- stability: thermodynamics of double-helix formation with CCGG, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp// Biochemistry.—1983.—22, N 2.—P. 256—263.

 9. Gronenborn A. M., Clore G. M., Kimber B. J. An investigation into the solution structures of two self-complementary DNA oligomers, 5'-d(C-G-T-A-C-G) and 5'-d(A-C-G-C-G-C-G-T), by means of nuclear-Overhauser-enhancement measurements // Biochem. J.—1984.—221.—P. 723—736.
- 10. Refinement of the solution structure of the DNA hexamer 5'-d(GCATGC)2: combined use of nuclear magnetic resonance and restrained molecular dynamics/M. Milges, G. M. Clore, A. M. Gronenborn et al. // Biochemistry.— 1987.— 26, N 12.— P. 3718—3733.
- Reassesment of structural characteristics of the d(CGCG)₂: Actinomycin D complex from complete ¹H and ³P NMR/M Delepierre, C. V. Heijenoort, J. Igolen et al. // Biomol. Struct. and Dyn.—1989.—7, N 3.—P. 557—589.
 Freier S. M., Albergo D. D., Turner D. H. Solvent effects on the dynamics of (dG-dC)₃ // J. Biopolymers.—1983.—22, N 5.—P. 1107—1131.
 Веселков А. Н., Дымант Л. Н., Куликов Э. Л. Применение вариационных методов
- обработки экспериментальных данных при исследовании агрегации молекул акри-диновых красителей методом ЯМР высокого разрешения // Хим. физика.—1984.--3, № 8.— C. 1101—1108.
- 14. Investigation of the aggregation of acridine dyes in aqueous solution by proton NMR/A. N. Veselkov, L. N. Djimant, L. S. Karawajew, E. L. Kulikov//Stud. bio-phys.—1985.—106, N 3.— Р. 171—180.

 15. Дымант Л. Н., Вессаков А. Н. Межмолекулярные взаимодействия в комплексах
- ароматических лигандов с динуклеотидами в растворе и кристалле // Биофизика —
- 1988. 33, № 4.— С. 728.

 16. Веселков А. Н., Дымант Л. Н., Барановский С. Ф. Определение термодинамических параметров взаимодействия профлавина с рибодинуклеозидмонофосфатами
- СрG и GpC в водном растворе по данным протовного магнитного резонанса // Мо-лекуляр. биология.—1987.—21, № 4.— С. 1110—1116.

 17. Thermodynamics of (dG-dC)₃ double-helix formation in water and deuterium oxide / D. D. Albergo, L. A. Marky, K. J. Breslauer, D. H. Turner // Biochemistry.—1981.— 20, № 6.— Р. 1409—1413.
- 18. Минимизация в инженерных расчетах на ЭВМ / С. Ю. Гуснин, Г. А. Омельянов, Г. В. Резников, В. С. Сироткин // Б-ка программ.— М., 1981.—120 с. 19. Marky L. A., Breslauer R. I. Calorimetric determination of base-stacking enthalpies
- in double-helical DNA molecules // Biopolymers.—1982.—21, N 10.—P. 2185—2194. Wada A., Yahuki S., Husimi Y. Fine structure in the thermal denaturation of DNA:
- high temperature resolution spectrophotometrie studies // CRC Crit. Revs. Biochem.—1980.—9, N 2.—P. 87—144.

Севастоп, приборостроит, ин-т, Лондоп, ун-т, Беркбек колледж Получено 08.02.91