

Cmpykmypa и функция биополимеров

УДК 577.152.261.45

КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ МИКРОКРИСТАЛЛОВ АСПАРТАТАМИНОТРАНСФЕРАЗЫ

В. М. Кочкина

Введение. Первые работы по определению энзиматической активности кристаллов ферментов появились около 20 лет назад. К их числу относятся работы по изучению активности кристаллов РНКазы S [1] и карбоксипептидаз А [2] и В [3]. Эти исследования проводили с кристаллами, ковалентно сшитыми глутаровым альдегидом, или в растворах с высокими концентрациями солей, препятствующих растворению кристаллов. Недавно опубликована работа по определению каталитической активности микрокристаллов митохондриальной аспартатаминотрансферазы (ААТ) из сердца кур [4] в растворе полиэтиленгликоля (30 %, вес/объем). Авторами было установлено, что молярная активность кристаллов фермента на порядок ниже, чем активность фермента в растворе. Несмотря на то, что во многих лабораториях нашей страны проводят исследования белков, находящихся в кристаллическом состоянии, работ по определению активности в кристаллах до сих пор нет. В то же время подобные исследования необходимы, поскольку кристаллы многих белков изучают рентгеновским способомдля установления их пространственной структуры. К числу успешно изучаемых ферментов относится ААТ из цитозоля сердца кур. Для этого белка установлена пространственная структура при разрешении 0,28 нм [5, 6]. Если при установлении трехмерной структуры фермента достаточно качественной характеристики каталитических свойств кристаллов фермента по типу «да — нет», то для изучения механизма действия фермента качественных данных недостаточно. В этом случае необходимы количественные сведения о каталитической активности кристаллов, так как результаты, полученные при исследовании малоактивных кристаллов, не будут отражать реально происходящие в активном центре процессы.

Выяснению функциональных способностей ААТ из цитозоля сердца кур в двух физических ее состояниях — растворе и кристаллах — посвящено данное исследование.

Материалы и методы. Фермент выделяли из сердца кур, удельная активность фермента составляла 70000 ед/мг. Активность фермента в растворе определяли прямым спектрофотомстрическим методом [7] при рН 7,5 в термостатированной на 25 °С кювете. Реакцию начинали добавлением 5—10 мкл кристаллического фермента к пробе в кювете объемом 1 мл с длиной светового пути 1 см. Активность регистрировали в течение 3 мин носле начала реакции. Активность микрокристаллов определяли этим же методом в аналогичных условиях, но в присутствии 20 % полиэтиленгликоля (ПЭГ) или 50 % сульфата аммония (СА).

Концентрацию белка определяли спектрофотометрически после растворения микрокристаллов, принимая $A_{280}^{160} = 14.0$ [8]. Спектрофотометрические измерения проводили на спектрофотометре «Carv 118» («Varian», США).

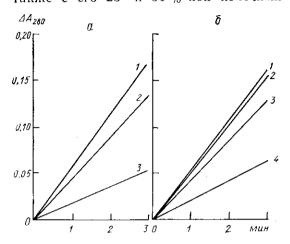
В работе использовали L-аспартат и 2-оксоглутарат фирмы «Sigma» (США), ПЭГ с молскулярной массой 6000 фирмы «Loba—Chemie» (Австрия), реактивы отечественного производства квалификации осч.

Результаты и обсуждение. Кристаллизация. Микрокристаллы цитоплазматической ААТ выращивали из двух кристаллизационных сред — СА и ПЭГ. Для того, чтобы кристаллографические параметры

Рис. 1. Кристаллы аспартатаминотрансферазы, выращенные из раствора: $a=\mathrm{CA};\ b=\mathrm{H}\Im\Gamma,\ \times 500.$

Fig. 1. Aspartate aminotransferase crystals grown from the solution: $u=\mathrm{SA};$ $\sigma=\mathrm{PEG},~~\times500.$

микро- и макрокристаллов не отличались, микрокристаллы из раствора СА получали в тех же условиях, при которых выращивали крупные кристаллы [9], используемые для рентгенографического исследования фермента [5]. Кристаллизацию проводили при 4 °C в стеклянных пробирках (10×60 мм) в 0,1 М калий-фосфатном буферном растворе, рН 7,5, в присутствии 40 % СА и 7 % метилпентандиола. Концентрация


белка в пробе составляла 18—20 мг/мл. После выпадения основной массы фермента в виде кристаллов (обычно через 5—7 дней) супернатантный маточный раствор отбирали, заменяя его стабилизирующей смесью, которая содержала 50 % СА в 0,3 М калий-фосфатном буфере, рН 7,5. В среде такого состава выпавшие кристаллы не растворялись (растворимость кристаллов контролировали микроскопически). Для лучшего отмывания кристаллов от маточного ферментного раствора их взмучивали в стабилизирующей смеси и оставляли не менее чем на сутки в холодильнике. Процедуру отмывания кристаллов повторяли до тех пор, пока в промывной смеси не исчезала ферментная активность, обычно 6—7 раз. Хранили кристаллы в холодильнике.

Эффективность каталитического действия фермента в кристаллическом состоянии в основном зависит от упаковки кристалла, его высоты и ширины, а также от влияния кристаллизационной или стабилизирующей среды. Влияние упаковки и среды можно только учесть, но не изменить. Изменить можно высоту и ширину кристалла. Чем меньше эти параметры, тем быстрее проникнут в глубь кристалла субстраты. Для цитозольной ААТ высота кристалла в 5—10 раз меньше его ширины, поэтому скорость диффузии ограничивается только шириной кристалла. В данном исследовании получили кристаллы шириной 1—2 мкм

(рис. 1, a).

Как упоминалось ранее, исследования активности кристаллической митохондриальной ААТ [4] проводили на кристаллах, выращенных из раствора ПЭГ. Для сравнения каталитической способности цитозольного и митохондриального изоферментов были получены кристаллы цитозольной ААТ из раствора ПЭГ (19 %, вес/объем). Кристаллизацию проводили при комнатной температуре в 0,1 M калий-фосфатном буфере, рН 7,5. Концентрация белка в пробе составляла 17—25 мг/мл. В стеклянную пробирку (7 \times 40 мм) вносили 0,2 мл 38 %-ного ПЭГ в 0,1 M калий-фосфатном буфере, рН 7,5, затем осторожно наслаивали 0,2 мл ферментного раствора в таком же буфере. Пробирки плотно закрывали и оставляли в комнате. Кристаллы (рис. 1, б) выпадали через 3—4 дня. После выпадения кристаллов из пробирок отбирали маточный ферментный раствор, не выпавший в виде кристаллов, и добавляли 20 %-ный ПЭГ в 0,1 М калий-фосфатном буфере, рН 7,5. Кристаллы для лучшего отмывания от маточного раствора взмучивали и оставляли на сутки при комнатной температуре. Процедуру отмывания кристаллов от маточного раствора фермента повторяли до тех пор, пока в промывных средах не исчезала ферментная активность (обычно 6—7 раз). Специальной сортировки кристаллов не проводили. Хранили отмытые кристаллы в 20 %-ном ПЭГ в 0,1 М калий-фосфатном буфере, рН 7,5, при комнатной температуре.

Активность фермента. Определение функциональной способности фермента в двух физических его состояниях -- кристаллах и растворе — для большей достоверности и сравнимости результатов проводили только на ферменте из кристаллического состояния. Аликвоту предварительно взмученных в стабилизирующей смеси кристаллов вносили в кювету со средой, не содержавшей СА или ПЭГ. Кристаллы растворяли непосредственно в кювете, перемешивая раствор перед определением активности, регистрируя, таким образом, активность фермента в состоянии раствора. Активность фермента в кристаллическом состоянии измеряли в среде, препятствующей растворению кристаллов — в 50 %-ном СА или 20 %-ном ПЭГ. В кювету вносили аликвоту суспензии микрокристаллов, закрывали ее тефлоновой пробкой и несколько раз поворачивали вверх-вниз для перемешивания содержимого кюветы. В процессе измерения активности фермента в кристаллическом состоянии также проводили перемешивание реакционной среды. Результаты измерения активности не менялись после перемешивания, поскольку кристаллы таких размеров в используемых для ее определения средах находились во взвешенном состоянии. В ходе исследования необходимо было учитывать ингибирующее действие на процесс переаминирования высоких концентраций субстратов [10], а также СА или ПЭГ. Энзиматическую активность измеряли в растворе, содержавшем 30 мМ аспартат и 3 мМ 2-оксоглутарат, поскольку при таких концентрациях субстратов для цитозольной ААТ из сердца кур ингибирования субстратами еще не наблюдали. Для того, чтобы в какой-то степени учесть влияние СА или ПЭГ, реакцию по определению активности проводили в пробах с различным процентным содержанием осадителей. Активность микрокристаллов, выращенных из раствора СА, определяли в реакционных средах, не содержавших СА, а также с его 25- и 50 %-ной конечных концентрациях. На рис. 2, а

представлены результаты определений. Как видно, в среде с 25%-ным раствором СА активность фермента (в

Рнс. 2. Активность кристаллического фермента (9 мкг) в средах: a — без СА (1); с 25 %-ным (2); 50 %-пым СА (3); δ — без ПЭГ (1); с 10 %-ным (2); 15 %-ным (3); 20 %-ным ПЭГ (4).

Fig. 2. The activity of crystalline aspartate aminotransferase (9 μ g) in media: a — without SA (I); in 25 % SA (2); in 50 % SA (3); δ — without PEG (I); in 10 % PEG (2); in 15 % PEG (3); in 20 % PEG (4).

состоянии раствора) снижается и составляет 78 % исходной. Увеличение насыщения СА до 50 % еще сильнее тормозит реакцию переаминирования. Активность фермента в кристаллическом состоянии составляет 41 % активности фермента в растворе 25%-ного СА и 32 % активности в пробе, не содержащей СА. При определении активности фермента в состоянии раствора в 0,4 М калий-фосфатном буфере, рН 8, с постепенным увеличением в среде насыщения СА от 0 до 30 % (шаг 5 %) наблюдали плавное снижение активности. Экстраполяция кривой зависимости активности от насыщения СА показала, что нулевая активность фермента будет при 48%-ном насыщении СА в среде. Таким образом, активность кристаллического фермента, наблюдаемая в среде с 50%-ным насыщением СА, очень велика, несмотря на то, что она составляет лишь 32 % исходной

Результаты по определению активности кристаллов, выращенных из раствора ПЭГ, представлены на рис. 2, б. Активность измеряли в средах, не содержавших ПЭГ и содержавших его 10, 15, 20 и 28 %. Оказалось, что наличие в реакционной среде 10 %-ного ПЭГ практически не оказывает влияния на каталитическую активность фермента. При 15 %-ном ПЭГ в пробе активность снижается на 18—23 % исходного значения. В реакционной среде с 10 и 15 %-ным ПЭГ кристаллы, вносимые в пробу, растворялись и определяемая активность принадлежала ферменту в состоянии раствора. Активность фермента в среде с 20 %-ным ПЭГ является активностью фермента в кристаллическом состоянии, она составляет 40 % активности фермента в состоянии раствора в среде без ПЭГ. При 28 %-ном ПЭГ в реакционной среде субстраты начали выпадать в осадок и поэтому данные этого опыта нельзя сравнивать с данными других опытов.

Итак, кристаллы цитозольной ААТ из сердца кур, выращенные из растворов СА и ПЭГ, обладают высокой энзиматической активностью и вполне пригодны для исследования механизма действия фермента кристаллографическим методом.

CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE MICROCRYSTALS

V. M. Kochkina

Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow

The enzymic activity of crystalline cytosolic aspartate aminotransferase (L-aspartate: aminotransferase 2-oxoglutarate, EC 2.6.1.1) was determined in suspensions of microcrystals in 50 % ammonium sulphate and 20 % (wt/vol) polyethylene glycol. The crystals (1-2 µm wide) were small enough to preclude diffusional rate limitation. The catalytic activity of the crystalline enzyme is 32 % and 40 % of the cuzyme activity in solution. respectively.

- 1. Doscher M. S., Richards F. M. The activity of an enzyme in the crystalline state: ri-
- Doscher M. S., Richards F. M. The activity of an enzyme in the crystalline state: ribonuclease S // J. Biol. Chem.—1963.—238, N 7.— P. 2399—2406.
 Spilburg C., Bethune I. L., Vallee B. L. Kinetic properties of crystalline enzymes. Carboxypeptidase A // Biochemistry.—1977.—16, N 6.— P. 1142—1150.
 Kinetic properties of carboxypeptidase B in solution and crystals / G. M. Alter, D. L. Leussing, H. Neurath, B. L. Vallee // Ibid.—1977.—16, N 16.— P. 3663—3668.
 Kirsten H., Christen P. Calalytic activity of microcrystals of aspartate aminotransferase // Biochem J.—1983.—211, N 2.— P. 427—434.
 Изменения конформации интозольной аспартатаминотрансферазы, нилучироченые
- 5. Изменения конформации цитозольной аспартатаминотрансферазы, индуцируемые оксоглутаратом / В. И. Малашкевич, В. М. Кочкина, Ю. М. Торчинский, Э. Г. Арутюняи // Докл. АН СССР.— 1982.—267, № 5.— С. 1257—1261.
- Конформации аспартатаминотрансферазы в кристалле / В. В. Борисов, С. Н. Борисова, Н. И. Сосфенов, Х. Ф. Б. Диксон // Молекуляр. биология.— 1983.—17, № 4.—
- C. 705—713.

 7. Jenkins W. T., Yphantis D. A., Sizer I. W. Glutamic aspartic transaminase // J. Biol. Chem. 1959.—234, N 1.—P. 51—57.

 8. Bertland L. H., Kaplan N. O. Studies of the conformations of the multiple forms of the conformations of the multiple forms of the conformation.—9, N 13.—P. 2653 chicken heart aspartate aminotransferase // Biochemistry.— 1970.— 9, N 13.— P. 2653—
- 9. Кочкина В. М. Влияние нонов металлов на размер кристаллов аспартаттрансаминазы, получение тяжелоатомных производных кристаллов фермента // Кристаллография.— 1983.—28, № 5.— С. 1013—1017.

 10. Kiick D. M., Cook P. F. pH Studies toward the elucidation of the auxiliary catalyst
- for pig heart aspartate aminotransferase // Biochemistry. 1983. 22, N 2. P. 375-

Ин-т молекуляр. биологии АН СССР, Москва

Получено 27.06.85

УЛК 577.112.5:578.841

СТРОЕНИЕ НЕКОТОРЫХ ХИМОТРИПТИЧЕСКИХ ПЕПТИДОВ ГРАНУЛИНА ВИРУСА ГРАНУЛЕЗА ОЗИМОЙ СОВКИ, AGROTIS SEGETUM

Т. Л. Левитина, Н. В. Роднин, С. Б. Серебряный, Э. А. Козлов

В предыдущей работе [1] описаны результаты выяснения строения триптических пептидов гранулина вируса гранулеза (В Γ) A. segetum. В настоящей статье приведены данные, полученные при изучении химотриптических пептидов этого белка.

Материалы и методы. Получение белка, восстановление и карбоксиметилирование описано рашее [1]. Химотрипсин («Reanal», ВНР) обрабатывали ингибитором трипсина из бобов сои [2]. Расщепление химотрипсином проводили в 0,2 н. бикарбонате аммония (рН 7,8), содержащем 2 М мочевину, в течение 22 ч при 37°C. Фермент-субстратное соотношение 1:50. Реакцию останавливали лиофилизацией. Химотрипсиновый гидролизат растворяли в 50 %-ной муравьиной кислоте и разделяли гель-фильтрованием