Trp144 как флуоресцентный зонд для изучения конформационной подвижности С-модуля эукариотической тирозил-тРНК синтетазы

М. А. Кордыш, К. А. Одынец, А. И. Корнелюк

Институт молекулярной биологии и генетики НАН Украины Ул. Академика Заболотного, 150, Киев, 03143, Украина

Получены спектры флуоресценции С-модуля тирозил-тРНК синтетазы. Используя методы флуоресцентной спектроскопии и компьютерного моделирования, впервые охарактеризовано микроокружение остатка триптофана. Быстрая конформационная динамика С-модуля в наносекундном временном интервале определена с помощью тушения флуоресценции С-модуля акриламидом и ионами Cs[†].

Введение. Тирозил-тРНК синтетаза млекопитающих состоит из двух структурных модулей: каталитического NH2-концевого модуля и СООН-концевого цитокинподобного модуля, имеющего сродство к тРНК и выполняющего некаталитическую цитокиновую функцию после протеолитического отщепления от каталитического ядра синтетазы [1, 2]. Две альтернативные функции С-модуля могут реализовываться в разных конформациях белка. Одним из наиболее информативных методов изучения конформационных особенностей и внутримолекулярной динамики белков является флуоресцентная спектроскопия [3-5]. Собственная флуоресценция белков обусловлена, в основном, остатками триптофана, которые являются зондами в пространственной структуре белка. Благодаря этим зондам можно получить информацию о свойствах микроокружения флуорофора, о динамике белка в растворе, осуществить мониторинг конформационных изменений белка, имеющих функциональное значение. Для изучения конформационных изменений С-модуля в растворе в работе охарактеризована собственная флуоресценция С-модуля и проанализирована его внутримолекулярная динамика методами флуоресцентной спектроскопии.

Материалы и методы. Объект исследований — С-модуль тирозил-тРНК синтетазы — был экспрессирован в клетках Escherichia coli и очищен до

© м. А. КОРДЫЦО, К. А ОДЫНЕЦ, А. И. КОРНЕЛЮК, 2003

гомогенного состояния (95 %) металхелатирующей хроматографией согласно [6].

Флуоресценцию измеряли на спектрофлуориметре «Model 850» («Hitachi», Япония).

Эксперименты выполняли при термостатировании с помощью хромель-алюмелевой термопары при температуре $25~^{\circ}$ C с точностью $\pm~0.2~^{\circ}$ C.

Ширина щели для монохроматора возбуждающего света составляла 5 нм. Длина волны возбуждающего света при изучении белковой флуоресценции равнялась 280 или 296 нм, ее определяли с точностью до \pm 0,1 нм.

Спектры флуоресценции записывали с помощью автоматического сканирования в интервале длин волн 300—400 нм. Скорость сканирования составляла 30—60 нм/мин.

Во всех случаях измерение спектров проводили в режиме сравнения. Геометрическая ширина щели для монохроматора регистрирующей системы была равна 5 нм. Это позволило исключить влияние комбинационного рассеяния света в спектрах флуоресценции. Разрешение в полученных спектрах флуоресценции составляло 0,2 нм.

Флуоресценцию измеряли в кварцевых прямоугольных кюветах с длиной оптического пути 0.5 см. Объем исследуемых растворов составлял 0.1-0.15 мл. Кюветы помещали в термостатируемый кюветодержатель. Флуоресценцию регистрировали под углом 90° к направлению пучка возбуждающего света. Для снижения влияния случайных факторов спектры определяли не менее 3 раз. Воспроизводимость спектров флуоресценции по интенсивности в максимуме была не менее 98—99 %.

Измерение спектров флуоресценции С-концевого модуля тирозил-тРНК синтетазы проводили в 20 мМ трис-HCl, рН 7,5, 150 мМ NaCl. Перед приготовлением раствора используемый буфер проверяли на отсутствие флуоресцирующих примесей, записывая спектр флуоресценции. Каких-либо примесей, флуоресцирующих в исследуемом спектральном диапазоне 300—400 нм, в буферных растворах не обнаружено.

Перед измерением спектров флуоресценции исследуемого белка записывали его спектры поглощения на двухканальном спектрофотометре «Specord UV VIS» (ГДР). Использовали кварцевые микрокюветы с длиной оптического пути 0,5 см, объем исследуемого образца составлял 0,2—0,4 мл. Спектры поглощения записывали в УФ области.

В опытах по тушению флуоресценции ионными тушителями готовили серию растворов белка с изменяющейся концентрацией тушителя от 0 до 0,3 М. Измеренные значения интенсивностей флуоресценции образцов белка с тушителями корректировали на коэффициент разбавления и экранирования [7] добавляемых в раствор реагентов.

Результаты и обсуждение. На рис. 1 представлены спектры флуоресценции С-концевого модуля тирозил-тРНК синтетазы при температуре 25 °С и длинах волн возбуждения 280 и 296 нм. Различие спектров, возбуждаемых при 280 и 296 нм, обусловлено вкладом тирозиновой флуоресценции при возбуждении длиной волны 280 нм. Спектр тирозиновой флуоресценции, полученный при вычитании нормированных при 370 нм спектров, возбуждаемых при 280 и 296 нм, имеет положение максимума при 305 нм, а вклад тирозиновой флуоресценции в общий спектр излучения белка составляет около 10 %.

В структуре С-модуля тирозил-тРНК синтетазы [8] содержатся один остаток триптофана (Trp144) и три остатка тирозина (Tyr27, Tyr111, Tyr140). Собственная флуоресценция белка при длине волны возбуждения 296 нм обусловлена флуоресценцией остатка Trp144.

Для выяснения локализации остатка триптофана в С-модуле по данным флуоресценции использована модель дискретных структурно-физиче-

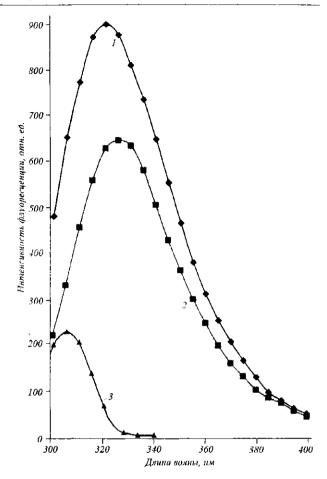


Рис. 1. Спектры флуоресценции С-модуля тирозил-тРНК синтетазы при длине волны возбуждения 280 нм (I), 296 нм (2) и разностный спектр (I-2) тирозиновой флуоресценции (3)

ских классов триптофанов в белке, предложенная Бурштейном [9]. Анализ положения максимума и ширины спектров триптофановой флуоресценции исследуемого белка показал, что Trp144 относится к классу I модели Бурштейна и соответствует внутренним остаткам триптофана, экранированным в белковой глобуле:

Параметр	$\lambda_{\rm ex}$ = 296 нм
Положение максимума	
спектра (λ_{max} , нм)	327
Ширина спектра (ДЛ, нм)	49
Квантовый выход (а)	0.09

Положение максимума спектра флуоресценции белка обусловлено гидрофобным микроокружением остатка Trp144, а также замедленной релаксацией окружения.

В работе визуализировано (рис. 2) и проанали-

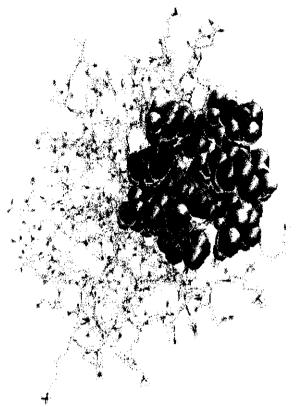


Рис. 2. Микроокружение остатка Trp144 С-модуля тирозилтРНК синтетазы

зировано окружение остатка Trp144 С-концевого модуля тирозил-тРНК синтетазы в сфере с радиусом 5 Å (в центре которой расположен Trp144) с помощью программы SwissPDB-Viewer 3.7(b2). В заданной области вокруг Trp144 находятся 16 аминокислотных остатков: восемь гидрофобных (Val2, Ile3, Pro4, Val108, Leu130, Phe134, Ala142, Phe149) и восемь гидрофильных (Tyr111, Asp133, Lys135, Gln143, Lys145, Gln146, Thr147, Asn148). Анализируя окружение Trp144, следует выделить отрицательно заряженную группу COO Asp133, а также две положительно заряженные группы NH₃⁺ Lys135 и Lys145. В рассматриваемом окружении Тгр144 важно отметить наличие семи тушащих контактным способом аминокислотных остатков [10]: Tyrlll, Aspl33, Lys135, Gln143, Lys145. Gln146, Asn148, а также присутствие 12 молекул воды, которые могут контактировать с остатком Trp144.

Проведенный расчет экспонированности остатка Trp144 в С-концевом модуле тирозил-тРНК синтетазы с помощью программы SwissPDB-Viewer 3.7(b2) обнаружил 1—2 %-ю экспонированность Trp144. В то же время максимум триптофановой

флуоресценции в данном белке находится на 327 нм, что, по теории Бурштейна, также свидетельствует о внутреннем экранированном положении остатка Trp144 в белке.

Тушение триптофановой флуоресценции в белках может происходить при контакте триптофана с тушащими боковыми цепями некоторых аминокислот (Cys, Asp, Gly, His, Lys, Asn, Gln, Tyr), а также с молекулами воды [10].

Для изучения доступности остатка Trp144 в белковой глобуле С-модуля мы использовали метод тушения флуоресценции белка внешними тушителями (акриламид, Cs⁺). Обнаружено, что при добавлении акриламида или ионов Сѕ к растворам исследуемого белка происходит тушение триптофановой флуоресценции. Полученные кривые тушения флуоресценции С-модуля акриламидом и Cs⁺ представлены на рис. З в виде зависимости относительной интенсивности флуоресценции I_{α}/I от концентрации тушителя (акриламида или Cs^+) (I_0 начальная интенсивность свечения; І — истинная интенсивность флуоресценции, соответствующая данной концентрации тушителя). Эффективность тушения характеризовали отношением максимального изменения интенсивности флуоресценции $\Delta I_H = I_0 - I_H$ к начальной интенсивности свечения I_0 . Выявлено, что остаток Trp144 является доступным для тушителей, а максимальное тушение флуоресценции С-модуля в присутствии акриламида и Cs⁺ равно 38 и 21 % соответственно.

Внутренние области белков обычно рассматриваются как неполярные [11]. Поскольку, как уже упоминалось выше, триптофан лишь на 1-2 % экспонирован, следует ожидать, что этот остаток будет почти недоступным для тушителей во внешней водной фазе. Однако сравнение тушения нейтральным тушителем акриламидом и заряженным тушителем Cs⁺ свидетельствует о частичной доступности Тгр144 для молекул тушителей, что может быть обусловлено наличием внутримолекулярной динамики в белковой глобуле. Известно, что акриламид тушит предпочтительно экспонированные остатки триптофана, но вместе с тем он может проникать и в белковые матрицы. Линейный характер представленных на рис. З кривых тушения указывает на динамический характер тушения триптофановой флуоресценции [11]. Динамическое тушение флуоресценции определяется частотой столкновений между флуорофором и тушителем. Аминокислотные остатки плотно упакованы, так что внутри молекулы белка нет свободного пространства для молекулы, подобной акриламиду. Однако тушение акриламидом флуоресценции остатка Тгр144 в исследуемом белке указывает на то,

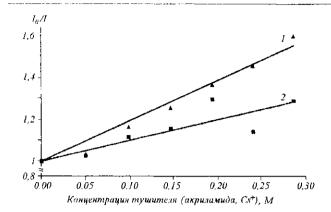


Рис. 3. Тушение флуоресценции С-модуля в присутствии акриламида (I), ионов Cs^{*} (2). Концентрация С-модуля 0,377 мг/мл $(2,46\cdot10^{-5}$ М)

что тушители диффундируют сквозь белковую матрицу. Для объяснения такой диффузии можно предположить, что белковая матрица флуктуирует в наносекундном временном диапазоне, обеспечивая проникновение молекул тушителя. Как указано выше, максимальное тушение флуоресценции для акриламида составляет 38 %, а для ионов $Cs^+ - 21$ %. Более слабое тушение ионами Cs^+ можно объяснить тем, что заряженные ионы вообще плохо проникают внутрь белка. Кроме того, нужно учесть наличие положительно заряженных групп Lys135 и Lys145 в ближайшем окружении триптофана, что приводит к электростатическому отталкиванию катионов Cs^+ .

Выводы. Анализируя полученные данные, касающиеся спектров флуоресценции С-модуля, тушения его флуоресценции, а также результатов компьютерного моделирования, можно сделать вывод о том, что остаток триптофана в молекуле исследуемого белка в значительной степени экранирован. В то же время остаток Trp144 является частично доступным для внешних тушителей флуоресценции, что свидетельствует о диффузии тушителя сквозь белковую матрицу благодаря ее флуктуациям, т. е. о наличии быстрой внутримолекулярной динамики белка в наносекундном временном диапазоне.

M. A. Kordysh, K. A. Odynets, A. I. Kornelyuk

Trp144 as a fluorescence probe for investigation of the C-module rapid conformation dynamics in eukaryotic tyrosyle-tRNA synthetase

Summary

The spectra of fluorescence of the tyrosyle-tRNA synthetase C-

module have been obtained. The microsurrounding of a tryptophan residue has been characterized using the methods of fluorescence spectroscopy and computational modeling. The rapid conformation dynamics of the C-module in nanosecond time scale is revealed using the fluorescence quenching with acrylamide and Cs ions.

М. А. Кордиш, К. А. Одинець, О. І. Корнелюк

Trp144 як флуоресцентний зонд для вивчення конформаційної рухливості С-модуля еукаріотичної тирозил-тРНК синтетази

Резюме

Одержано спектри флуоресценції С-модуля тирозил-тРНК синтетази. Використовуючи методи флуоресцентної спектроскопії та комп'ютерного моделювання, вперше охарактеризовано мікрооточення залишку триптофану. Швидку конформаційну динаміку С-модуля в наносекундному часовому інтервалі визначено за допомогою гасіння флуоресценції С-модуля акриламідом та іонами Cs.

СПИСОК ЛИТЕРАТУРЫ

- Корнелюк А. И. Структурно-функциональное исследование тирозил-тРНК синтетазы млекопитающих // Биополимеры и клетка.—1998.—14, № 4.—С. 349—359.
- 2. Kornelyuk A. I., Maarten P. R. T., Dubrovsky A. L., Murray J. C. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase // Биополимеры и клетка.—1999.—15, № 2.—Р. 168—172.
- Демченко А. П. Люминесценция и динамика белков.— Киев: Наук. думка, 1988.—418 с.
- Демченко А. П. Равновесная внутримолекулярная подвижность в белках // Укр. биохим. журн.—1981.—53, № 4.— С. 114—128.
- Демченко О. П., Воловик З. М. Внутрішньомолекулярна динаміка і функція білків // Вісн. АН УРСР.—1988.— № 2.—С. 34—41.
- Дубровский А. Л., Савинская Л. А., Корнелюк А. И.
 Клонирование и бактериальная экспрессия цитокинподобного некаталитического домена бычьей тирозил-тРНК
 синтетазы // Биополимеры и клетка.—1998.—14, № 5.—
 С. 449—452.
- Ehrenberg M., Cronvall E., Rigler R. Fluorescence of proteins interacting with nucleic acids: Correction for light absorption // FEBS Lett.—1971.—18, N 2.—P. 199—203.
- 8. Голуб А. Г., Одынец К. А., Ныпорко А. Ю., Корнелюк А. И. Моделирование пространственной структуры СООН-концевого цитокинподобного модуля цитоплазматической тирозил-тРНК синтетазы быка // Биополимеры и клет-ка.—2000.—16, № 6.—С. 515—523.
- Веденкина Н. С., Бурштейн Э. А. Триптофановая флуоресценция белков в растворах. Положение максимума спектра флуоресценции // Молекуляр. биология.—1970.— № 4.—С. 743—748.
- Chen Y., Liu B., Yu H.-T., Barkley M. D. The peptide bond quenches indole fluorescence // J. Amer. Chem. Soc.— 1996.—N 118.—P. 9271—9278.
- 11. Лакович Дж. Основы флуоресцентной спектроскопии.—М.: Мир, 1986.—496 с.

УДК 577.152.611 Надійшла до редакції 11.11.02