С. В. Коношенко, Байала Иссо

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ВНУТРИМОЛЕКУЛЯРНОЙ ПОДВИЖНОСТИ И СРОДСТВА К КИСЛОРОДУ ГЕМОГЛОБИНОВ В РЯДУ ПОЗВОНОЧНЫХ

На основании данных ЯМР-релаксации дана филогенетическая оценка енутримолекулярной подвижности электрофоретически гомогенных фракций гемоглобинов отдельных представителей позвоночных. Установлено соответствие в филогенетических особенностях внутримолекулярной подвижности фракций гемоглобинов и их сродства к кислороду. При переходе от низших филогенетических групп позвоночных к высшим ивеличивается внутримолекулярная подвижность гемоглобинов и вместе с этим снижается их сродство к кислороду.

Введение. Вопросы эволюции относятся к числу общебиологических проблем, изучение которых осуществляется и на молекулярном уровне. Особый интерес представляет сравнительное изучение физико-химических, структурных и функциональных особенностей физиологически активных молекулярных систем, выполняющих важные биологические функции. Все большее внимание исследователей привлекают гомологичные белки. Гемоглобин наряду с другими гомологичными биологичные белки. Гемоглобин наряду с другими гомологичными биологимерами является одним из объектов филогенетического анализа [1—4]. Однако работы по изучению структурных и функциональных свойств гемоглобинов в сравнительном аспекте не имеют систематического характера, в основном они связаны с изучением доминирующих по количественному содержанию белковых фракций.

Информация о структурно-функциональных свойствах минорных фракций носит весьма фрагментарный характер и не дает возможности полностью оценить структурные и функциональные изменения гемоглобина в филогенезе.

Цель настоящей работы состояла в сравнительном исследовании внутримолекулярной подвижности и сродства к кислороду электрофоретически гомогенных фракций гемоглобинов представителей различных классов позвоночных.

Материалы и методы. Материалом для исследований служили гемоглобины представителей шести классов позвоночных. В каждой видовой группе класса было не менее 11 особей.

Класс млекопитающих: человек (Homo sapiens), крупный рогатый скот (Bos taurus), свиньи (Sus scrofa), гренландский тюлень (Padophilus groenlandicus).

Класс птиц: голуби (Columba livia), домашние утки (Anas platy-rhynchos), домашние куры породы корниш (Gallus domesticus).

Класс пресмыкающихся: черенаха среднеазнатская (Testudo horsfieldi), уж водяной (Natrix tessellata).

Класс земноводных: жаба серая (Bufo bufo), лягушка травяная (Rana temporaria).

Класс костных рыб: кефаль-сингиль (Mugil auratus), скорпена (Scorpaena porcus), кари (Cyprinus carpio), толстолоб (Hypophthal-michthys molitrix).

Представитель класса круглоротых: минога речная (Lampetra fluviatilis).

С С. В. Коношенко, Байала Иссо, 1994

Гемоглобин выделяли из эритроцитов по методу Драбкина [5].

Разделение гемоглобинов на фракции и их препаративное выделение осуществляли методами аналитического [6] и препаративного [7] электрофореза в полиакриламидном геле.

Сродство электрофоретически гомогенных фракций гемоглобинов к кислороду изучали с помощью построения кривых кислородной диссо-

циации [8].

Содержание метгемоглобина в растворах определяли по [9]; во всех

исследуемых пробах уровень его не превышал 3 %.

Релаксационные кривые снимали на ЯМР-релаксометре «Minispec-120» («Втикег», ФРГ) при температуре 25°С [10—12]. В качестве исследуемых образцов использовали 10%-е растворы гемоглобинов в D₂O. Спад свободной индукции регистрировали в режиме диодного де-

T а б л н ц а $\ 1$ Показатели относительного процентного содержания электрофоретически гомогенных фрикций гемоглобинов отдельных представителей позвоночных (n=7-11)

	Человек					Свин	ьĦ	Бык				
Показатель	Hb-1 Hb-2*		Hb)-3	Hb-t	Hb-2**		НЪ-3*	Hb-I		НЬ-2*	
Содержание, отн. %	2,0± ±0,015	95 <u>±</u> ±0,85		0± 0,017	16,7∃ ±0,1			36,5± ±0,48	5,0± ±0,04	95,0± ±0,92		
			Голубь									
Покязатель	Hb-i	Нь-2 Нь-3 Нь-4**		НЬ -5*			одна фракция					
Содержание, оти. %	11,35± 13,3= ±0,092 ±0,0					36,5± ±0,52		27,35± ±0,26		100,0		
1	Домашняя утка					Домашняя курь					(a	
Показатель	Hb-1** Hb-2		•	НЬ	-3	Нъ-4		.Hb-!*	Нь-2		Hb-3	
Содержание, отн. %	42,0± 39,0± ±0,55 ±0,51			7,0± ±0,06		12,0± ±0,10		47,0± ±0,62	35,0± ±0,43		18,0± ±0,15	
Показатель	Уж водяной			Черепаха				Лягушка травиная				
	Hb-1* Hb-2			Н Ь-1		Hb-2		Hb-1*			Hb-2	
Содержание, отн. %	60,0± ±0,72	40,0± ±0,55		80,0 ±0		20,0; ±0,					2,0± -0 ,59	
Показатель	Жаба	Скорпена				Кефаль-сингиль						
	Hb-!*	Hb-2	Н	b-1	Hb-2*	Hb-3	**	Hb-1**	нь	Нь∙2* [
Содержанис, отн. %	62,0± ±0,75	38,0± ±0,50	7,0 ±0)±),05	44,0± ±0,6			47,0± ±0,61		1,0± 12,0± (0,57 ±0,09		
Показатель	Карп			Толстолоб			_[_	Минога речивя				
	НЪ-1	1 Hb-2*		₽Ib-t		f[b-2*		Flb-t*	Hb-2		Hb-3	
Содержание, отн. %	33,0± ±0,38	67,0± ±0,8		32,0 ±0,		±,0,30 ±3,0±	. \$0,0± ±0,3i		64,5± 22,3± ±0,69 ±0,18		13,2± ±0,10	

^{*} Фракции с наиболее высоким содержанием белка.

гектирования. Время между 90°-ми импульсами составляло 1 с, каждая точка спада накапливалась 30 раз. Для регистрации спада амплитуды спинового эха использовали импульсиую последовательность Карра — Парсела — Мейбума — Гилла. Время между последовательностями составляло 1 с. Релаксометр работал в режиме фазового детектирования.

Особенностью релаксационных кривых всех измеренных образцов являлось наличие как минимум двух различных экспоненциальных участков: быстро- и медленнорелаксирующих компонент (БРК п МРК). Время релаксации отдельных компонент определяли при помощи программного обеспечения.

Результаты и обсуждение. Показано, что подавляющее большинство изученных гемоглобинов представителей различных классов позвоночных являются гетерогенными и разделяются методом электрофореза

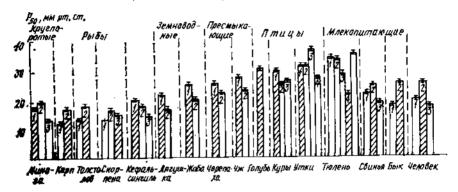


Рис. 1. Сравнительная характеристика сродства к кислороду главных (заштрихованные столбики) и минорных электрофоретических фракций гемоглобинов отдельных представителей позвоночных (цифрами обозначены номера фракций)

в 7 %-м ПААГ на отдельные фракции, среди которых можно выделить главные (с наиболее высоким содержанием белка) и минорные (табл. 1).

Изучение кривых кислородной диссоциации электрофоретически гомогенных фракций гемоглобинов показало, что наиболее высоким сродством к кислороду характеризуются как главные, так и минорные фракции гемоглобинов миноги и представителей класса рыб. У представителей классов земноводных и пресмыкающихся наблюдается меньшее
сродство фракций гемоглобинов к кислороду. Такая же особенность
функциональных свойств фракций гемоглобинов, но в большей мере отмечается у представителей класса птиц. В характере изменений функционального показателя гемоглобинов прослеживается определенная направленность: снижение сродства к кислороду при переходе от низших
филогенетических групп позвоночных к высшим. Наиболее значительные изменения характерны для перехода от класса рыб к классу земноводных, а также от класса пресмыкающихся к классу птиц (рис. 1,
главные фракции отмечены штрихом).

В табл. 2 представлены значения времен релаксации быстрорелаксирующей компоненты спада свободной индукции и спада амплитуды спинового эха, полученные методом ЯМР-релаксации для электрофоретически гомогенных фракций гемоглобинов. Основываясь на данных литературы [10, 13], БРК спада свободной индукции соответствует релаксации протонов наиболсе плотноупакованных и малоподвижных участков глобулы, тогда как БРК спада амплитуды спинового эха — релаксации наиболее подвижных участков глобулы белка.

Сравнительный анализ времен релаксации дает возможность установить, что в исследуемых гетерогенных системах гемоглобина есть фракции с большей и меньшей внутримолекулярной подвижностью. На рис. 2 (a, δ) дана графическая оценка филогенетических различий времен релаксации БРК спада свободной индукции и спада амплитуды спинового эха главных фракций гемоглобинов. Эти данные позволяют пред-

Табянца 2
Значения времен релаксации (Т₂) быстрорелаксирующего компонента (БРК) спада свободной индукции (ССИ) и спада амплитуды спинового эха (САСЭ) для электрофоретически гомогенных фракций гемоглобинов отдельных представителей позвоночных

преостивителей позвоночн	1			Чело	век					
Показатель	Hb-t		Нь-2*				Hb-3			
Т₂БРК (ССИ), 10-3 мс Т₂БРК (САСЭ), мс	4,0±0,0 10,0±0,0						3,6±0,008 8,0±0,012			
	Бы	Бык				Св	нья			
Показатель	Hb-1	Hb-2*		нь-1		Hb-2*		Hb-3		
T ₂ БРК (ССИ), 10 ⁻³ мс T ₂ БРК (САСЭ), мс	3,65±0,008 8,2±0,011	4,7±0,01 13,35±0,0		4,3±0,008 11,4±0,02		4,6±0,009 12,8±0,02		3,7±0,009 9,0±0,011		
	Гренландский тюлень									
Показатель	Hb-i	НЬ-2		НЬ-3		Hb-4*		Hb-5		
T ₂ БРК (ССИ), 10 ⁻³ м T ₂ БРК (САСЭ), мс	c 6,6±0,01 18,5±0,024		6,4±0,01 4,8±0,008 18,0±0,024 14,6±0,022		4,4±0,008 6,9±0,012 11,2±0,021 20,0±0,025					
	Голубь			Куры						
Показатель	Одна фракция	*1-dH		Нь		1-2		нь-э		
T ₂ БРК (ССИ), 10 ⁻³ м T ₂ БРК (САСЭ), мс	c 5,8±0,011 16,2±0,022	5,0±0,01 15,8±0,022			4,5± 13,0±	-0,01 -0,02		4,8±0,009 13,8±0,021		
	Утки									
Показатель	Hb-1*		Hb-2		нь	НЬ-3		НЪ-4		
Т₂БРК (ССИ), 10-3 м Т₂БРК (САСЭ), мс	c 6,2±0,01 16,5±0,023	6,25±0,01 17,0±0,02				-0,01: -0,02	2 4	1,7±0,009 1,0±0,02		
	Уж			Черепаха						
Показатель	Hp-1+		НЪ-2		НЬ	Hb-1*		Hb-2		
T ₂ БРК (ССИ), 10 ⁻³ м T ₂ БРК (САСЭ), мс	4,8±0,009 14,0±0,02	4,49±0,00 11,8±0,02						4,3±0,008 1,1±0,018		
	Лягуц	ка		Жаба серая				Қарп		
Показатель	Hb-1*	НЬ-2	1	Hb-1* Нb-2 Н		Нъ∙1*	Hb-2			
T ₂ БРК (ССИ), 10-3 м	c 4,4±0,009	3,5±		4,6±			3,0±	3,5±		
T ₂ BPK (CAC3), MC	11,0±0,018	$8,4\pm$		±0,008 ±0,0 13,0± 10,0 ±0,02 ±0,0		± 5,5±		±0,007 7,95± ±0,012		
	Толс	толоб				Скорпена				
Показатель	Hb-1	НЪ-2*			Hb-1	b-1 H1		нь-з•		
T ₂ БРК (ССИ), 10 ⁻³ м Т ₂ БРК (САСЭ), мс	ic 3,15±0,007 5,87±0,012	3,7±0,6 8,45±0,6		3,1±0,007 6,0±0,011			i±0,008 ±0,013	3,3±0,008 7,0±0,011		

положить, что в процессе филогенеза происходило направленное увеличение внутримолекулярной подвижности гемоглобина. Наиболее значительные изменения прослеживаются при переходе от класса круглоротых к классу рыб, от класса рыб к классу земноводных и от класса

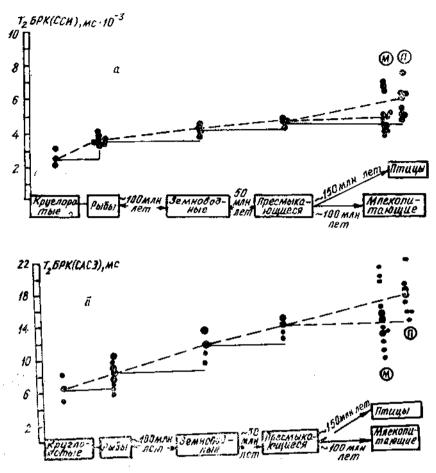


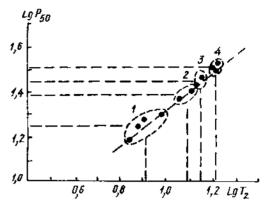
Рис. 2. Филогенетическая оценка времен релаксации (T_2) БРК спада свободной индукции (a) и амплитуды спинового эха (b) электрофоретических фракций гемоглобинов позвоночных. Точки большего и меньшего размеров — главные и минорные фракции соответственно

пресмыкающихся к классу птиц. У представителей класса млекопитающих по сравнению с представителями пресмыкающихся изменения соответствующего показателя гемоглобина не столь значительны, что может свидетельствовать о стабилизации структурно-динамических параметров гемоглобина на определенном этапе филогенеза позвоночных.

Окончание табл. 2

	Кеф	аль-сингиль		Минога речная			
Показатель	Hb-i*	Нь-2	Нъ-3	Hb-1*	Hb-2	НЬ-3	
T ₂ БРК (ССИ), 10 ⁻³ мс T ₂ БРК (САСЭ), мс	4,0±0,008 10,0±0,02	3,6± ±0,008 9,3± ±0,018	3,3± ±0,007 6,5± ±0,011	2,5± ±0,006 6,1± ±0,012	3,0± ±0,008 8,2± ±0,015	2,1± ±0,008 4,5± ±0,009	

^{*} Фракции с наиболее высоким содержанием белка.


Прослеживается соответствие в филогенетических особенностях внутримолскулярной подвижности фракций гемоглобинов и их сродстве к кисловоду.

Из данных рис. З видно, что при переходе от низших филогенетических групп позвоночных к высшим повышается внутримолекулярная подвижность главных фракций гемоглобинов и вместе с этим снижается

их сродство к кислороду (r = +0.9).

Таким образом, результаты проведенных исследований позволяют сделать вывод о

Рис. 3. Корреляционная зависимость сродства к кислороду (P_{50}) от внутримолекулярной подвижности (T_2) БРК спада амплитуды спинового эха) для главиых фракций гемоглобинов представителей класса рыб (I), земноводных (2), пресмыкающихся (3) и птиц (4)

том, что в филогенезе шло неравномерное, но направленное развитие внутримолекулярной динамики и функциональной активности гемоглобина. Увеличение внутримолекулярной подвижности гемоглобина приводило к изменению кислородо-транспортных свойств данного белка в сторону повышения его эффективности на этапе разгрузки в тканях.

С. В. Коношенко, Байала Іссо

ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА ВНУТРІШНЬОМОЛЕКУЛЯРНОЇ РУХЛИВОСТІ ТА СПОРІДНЕНОСТІ ДО КИСНЮ ГЕМОГЛОБІНІВ У РЯДУ ХРЕБЕТНИХ

Резюме

Грунтуючись на даних ЯМР-релаксації зроблено філогенетичну оцінку внутрішньомолекулярної рухливості електрофоретично гомогенних фракцій гемоглобінів окремих представників хребетних. Встановлено відповідність у філогенетичних особливостях внутрішньомолекулярної рухливості фракцій гемоглобінів та їх спорідненості до кисню. При переході від нижчих філогенетичних груп хребетних до вищих зростає внутрішньомолекулярна рухливість гемоглобінів і разом з тим знижується їх спорідненість до кисию.

S. V. Konoshenko, Bayala Isso

COMPARISON CHARACTERISTIC OF INTRAMOLECULAR MOBILITY AND AFFINITY TO OXYGEN OF HEMOGLOBINS IN VERTEBRATE LINE

Summary

Philogenetic characteristic of intramolecular mobility of hemoglobin's electrophoretically homogeneous fractions in vertebrate line has been studied by NMR-relaxation methods. The correlation of intramolecular mobility and affinity to oxygen of hemoglobins fractions has been determined. A regular increase of hemoglobins intramolecular mobility and decrease of hemoglobins affinity to oxygen have been shown in philogenetic process.

СПИСОК ЛИТЕРАТУРЫ

Zuckerkandt E. Evolution of hemoglobin // J. Sci. Amer.—1965.—212.—P. 110—115.
 Zuckerkandt E. Evolutionary processes and evolutionary noise at the molecular level. 1. Functional density in proteins // J. Mol. Evol.—1976—7, N 3.—P. 167—183.

- 3. Dayhoff M. O., Langhlin P. T., Barker W. C. Evolution of sequence within protein super-familes // Naturwissenshaften.— 1975.— 62.— P. 154—173.
- Кимура М. Молекулярная эволюция: теория нейтральности.— М.: Мир, 1985.— 398 c.
- Drabkin D. A. A simplified technique for large scole crystallization of hemoglobin in the cristalline // Arch. Biochem.—1949.—21, N 5.—P. 242—249.
- 6. Davis B. Disk electrophoresis. II. Method and application to human serum proteins // Ann. N. Y. Acad, Sci. 1964. 121, N 11. P. 404-406.
- 7. Ажицкий Г. Ю., Багдасарьян С. Н. Возможность выделения мономерного иммуночистого сывороточного альбумина // Лаб, дело.— 1985.— № 12. химически C. 71**2**—714.
- 8. Шорохов Ю. А. Спектрофотометрический метод определения кривой диссоциации оксигемоглобина в кювете десатураторов // Физиол, журн. — 1974. — 9, C. 654-657.
- 9. Кушаковский М. С. Метгемоглобинемии // Справочник по функциональной диагностике.— М.: Медицина, 1970.— С. 423—427.
- 10. Аксенов С. И. Исследования динамической структуры глобулярных белков импульсными методами ядерного магнитного резонанса // Молекуляр. биология. — 1983. —17,
- № 3.— С. 475—483.
 11. *Федотов В. Д.* Ядерный магнитный резонанс и внутримолекулярная подвижность белков // Там же.— С. 493—504.
- 12. Вашман А. А., Пронин И. С. Ядерная магнитная релаксационная спектроскопия.—
- М.: Энергоатомиздат, 1986.— 223 с. 13. Иванников А. И., Абрамов В. И., Волков В. Я., Завьялов В. П. Сравнительное исследование динамических конформационных свойств миеломных иммуноглобулинов G человека разных подклассов импульсным методом ЯМР // Молекуляр, биология.— 1983.— 17, № 4.— С. 734—740.

Симферопольский гос. ун-т

Получено 02.11.93