Э. А. Козлов, Т. Л. Левитина, М. Т. Бобровская, Н. В. Роднин, О. С. Мирошниченко, Н. В. Латышко, Л. В. Гудкова

ДОПОЛНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ БРОМЦИАНОВЫХ ФРАГМЕНТОВ КАТАЛАЗЫ ГРИБА PENICILLIUM VITALE

Выяснено строение пяти бромциановых фрагментов каталазы гриба P. vilale, включающих 8, 61, 110, 27 и 9 остатков аминокислот.

Введение. Ранее [1] опубликованы результаты разделения смеси бромциановых фрагментов каталазы *P. vitale* и исследования аминокислотной последовательности одного из фрагментов. Мы продолжили очистку и дальнейшее выяснение строения некоторых фрагментов. В предыдущей работе [1] один из фрагментов изучали на смеси двух. Цель настоящего исследования состояла в выяснении строения примесного фрагмента из этой смеси путем анализа пептидов, выделенных из продукта расщепления смеси трипсином и химотрипсином.

Материалы и методы. Схема разделения и методы очистки самих фрагментов, триптических и химотриптических пептидов описаны в сообщении [1]. Определение аминокислотного состава и аминокислотной

последовательности приведено в этом же номере журнала [2].

Результаты и обсуждение. Как отмечалось выше, было продолжено исследование бромциановых фрагментов, основные этапы разделения которых описаны ранее [1]. Фрагменты из фракций I-II-3-3 (BrCN1), III-3-4 (BrCN8) и IV-3-2 (BrCN9) [1] подвергали дополнительной очистке высоковольтным электрофорезом и хроматографией на бумаге,

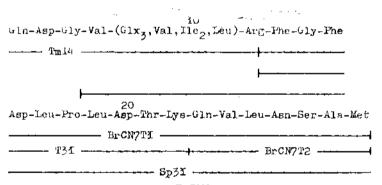


Рис. 1. Схема реконструкции фрагмента BrCN8

после чего был уточнен их аминокислотный состав (таблица). Строение фрагментов BrCN1 и BrCN9 определяли прямым секвенированием, проведя по семь стадий деградации. Их строение: Asp-Val-Ile-Ile-Glu-Thr-Leu-Met (BrCN1) и Leu-Phe-Asp-Glu-Val-Ile-Gly-Ala-Met (BrCN9).

В работе [1] получены два триптических пептида из фрагмента BrCN8. Реконструировать фрагмент можно из этих двух пептидов и пептида Sp13, строение которого установлено нами и приведено в параллельном сообщении [2]. Схема реконструкции показана на рис. 1.

[©] Э. А. Козлов, Т. Л. Левитина, М. Т. Бобровская, Н. В. Роднин, О. С. Мирошниченко, Н. В. Латышко, Л. В. Гудкова, 1994

В описание строения фрагмента BrCN6, приведенное в сообщении [1], в ходе дальнейших исследований внесены дополнения, некоторые изменения, а также исправлены допущенные опечатки. Так, в пептиде BrCN6Ch1 раскрыты скобки прямым секвенированием, а в пептидах BrCN6T5 и Т6 идентифицированы остатки аспарагиновых, глутаминовых кислот и их амидов. После внесенных поправок строение BrCN6 записывается следующим образом: Phe-Gln-Pro-Gly-His-Ile-Val-Arg-Gly-Val-Asp-Phe-Thr-Glu-Asp-Pro-Leu-Leu-Gln-Gly-Arg-Leu-Phe-Ser-Tyr-Leu-Asp-Thr-Gln-Leu-Asn-Arg-His-Gly-Pro-Asn-Ile-Gln-Gln-Leu-Gly-Phe-Asn-Arg-Pro-Pro-Arg-Ala-Pro-Ile-His-Asn-Asp-Asn-Arg-Asp-Gly-Ala-Gly-Glu-Met.

В ходе дальнейших исследований были дополнительно очищены пептиды T7—T10 и Ch1 из фрагмента BrCN7 [1], уточнены их амино-кислотные составы и проведено несколько стадий деградации по методу Этмана.

Строение пептидов BrCNT7 и Т9 оказалось идентичным таковому пептида BrCN6T5 [1]. Строение пептида BrCN7T8 — Туг-Asn-(Thr. Ser, Gln, Pro, Cly₂)-Lys. Аминокислотный состав уже опубликованного пептида BrCN7T10 [1] необходимо удвоить. На этом пептиде проведено четыре стадии деградации. Его строение: Leu-Gln-Val-Val-(Asx, Ser₃, Glx₂, Gly, Ala₂, Ile, Leu, Phe)-Lys. Ранес такого пептида из триптических гидролизатов немодифицированной [3] и малеил-каталазы [4] мы не получали. Однако первые два остатка совпадают с двумя остатками N-конца пептида Ттб6 [4]. Очевидно, что BrCN7T10 занимает N-концевое положение в Ттб6. Следовательно, пептид Ттб6 входит в состав фрагмента BrCN7. Анализируя аминокислотный состав всех известных

Аминокислотный состав бромциановых фрагментов каталазы P. vitale

Аминокислота	BrCN-2	BrCN-6	BrCN-7	BrCN-8	BrCN-9
Lys			7,6(8)	1,0(1)	
His	_	3,0(3)	2.0(2)	-	_
Arg	_	6,0(6)	1,0(1)	1,0(1)	0,9(1)
Asp	1,0(1)	10,0(10)	12,1 (12)	3,8(4)	
Thr	0,7(1)	2,0(2)	4,0(4)	0,8(1)	_
Ser	_	0,9(1)	9,4 (10)	0,8(1)	-
Glu	1,1(1)	7,3(7)	11,1(11)	5,0(5)	1,0(i+
Pro	_	5,5(6)	5,6(6)	1,0(1)	
Gly	_	7,2(7)	9,8(10)	2,2(2)	0,7(1)
Ala	-	2,2(2)	16,6 (17)	1,1(1)	0,8(1)
Val	0,6(1)	1,7(2)	9,3 (10)	1,9(2)	0,5(1)
lle	1,3(2)	2,6(3)	3,6(4)	1,0(1)	0,5(1)
Leu	1,0(1)	6,2(6)	5,0(5)	4,0(4)	0,9(1)
Туг		0,7(1)	2,4(3)	-	-
Phe	—	3,5(4)	5,6(6)	1,8(2)	0,8(1)
HSer	0,7(1)	0,5	0,9(1)	—	0,4
Lact.	_	0,5	_	1,0(1)	0,6
Всего	8	61	110	27	9

триптических пептидов немодифицированной и малеил-каталазы гриба *P. vitale* [3, 4] и сопоставляя их с аминокислотным составом Tm56, можно предположить, что в Tm56 С-концевое положение занимает пептид T32 [3], содержащий остаток метионина. По-видимому, Tm56 занимает С-концевое положение в пептиде Tm2 [4].

На пептиде BrCN7Ch1 проведено шесть стадий деградации по методу Эдмана. Его строение: Ser-Val-Asn-Glu-Gly-Gln-Ala-Asn.

Кроме полученных ранее [1] триптических пептидов, мы выделили из триптической смеси BrCN6,7 еще один существенный для реконструкции фрагмента BrCN7 триптический пептид BrCN7T11 со строением Val-Ala-Lys. Как известно, этот пептид занимает N-концевое положение в пептиде Tm2 [4], из чего следует, что почти весь пептид Tm2 входит во фрагмент BrCN7 и занимает в нем С-концевое положение. При этом

N-конец фрагмента BrCN7 блокирован, так как автоматическим секвенированием смеси BrCN6,7 пройдена последовательность только BrCN6 [1]. Таким образом, N-концевое положение во фрагменте BrCN7 должно принадлежать остатку пептида, имеющего последовательность Met-Gln. Среди триптических пептидов из малеил-каталазы таких пептидов имеется два — Tm14 и Tm52 [4]. Но С-концевая часть Tm14 занимает

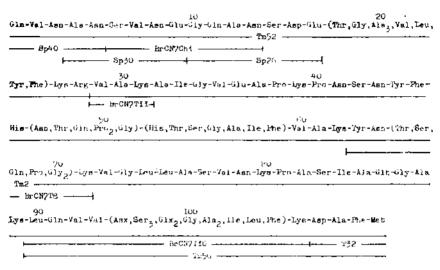


Рис. 2. Схема реконструкции фрагментов BrCN7

N-концевое положение во фрагменте BrCN8 (рис. 1). Из этого вытекает, что весь пептид Tm52 без остатка метионина находится в N-концевом положении во фрагменте BrCN7. Сумма аминокислотных составов пептидов Tm2 и Tm52, входящих во фрагмент BrCN7, соответствует приблизительно ранее опубликованному аминокислотному составу фрагмента BrCN7 [1]. Зная соотношение фрагментов BrCN6 и BrCN7 в смеси [1], точное строение BrCN6 (см. выше) и аминокислотный состав смеси BrCN6,7, нетрудно рассчитать точные аминокислотные составы обоих фрагментов, которые и приведены в таблице.

Все изложенные выше соображения можно выразить в виде схемы реконструкции фрагмента BrCN7, представленной на рис. 2. Для реконструкции N-концевой части фрагмента BrCN7 привлечены также три Sp-пептида, строение которых описано в параллельном сообщении в этом же номере журнала [2].

Таким образом, из 11 предполагаемых из содержания метионина в каталазе *P. vitale* [5] бромциановых фрагментов нами выяснено строение пяти, включающих в сумме 215 остатков аминокислот, что составляет 32 % длины полипептидной цепи по данным рентгеноструктурного анализа [6].

Е. А. Козлов, Т. Л. Левітіна, М. Т. Бобровська, М. В. Роднін, О. С. Мірошниченко, Н. В. Латишко, Л. В. Гудкова

ДОДАТКОВЕ ДОСЛІДЖЕННЯ БРОМЦІАНОВИХ ФРАГМЕНТІВ КАТАЛАЗИ ГРИБА PENICILLIUM VITALE

Резюме

З'ясовано побудову п'яти бромціанових фрагментів каталази гриба P. vitale, що включають 8, 61, 110, 27 і 9 залишків амінокислот.

E. A. Kozlov, T. L. Levitina, M. T. Bobrovskaya, N. V. Rodnin, O. S. Miroshnichenko, N. V. Latischko, L. V. Gudkova

ADDITIONAL INVESTIGATION OF PENICILLIUM VITALE CATALASE CYANOGEN BROMIDE FRAGMENTS

Summary

The structure of Penicillium vitale catalase cyanogen bromide fragments including 8, 61, 110, 27 and 9 amino acid residues was determined.

СПИСОК ЛИТЕРАТУРЫ

- 1. Левитина Т. Л., Гусак Н. М., Роднин Н. В. и др. Бромциановые фрагменты каталазы гриба Penicillium vitale // Биополимеры и клетка.— 1989.— 5. № 5.— С. 55—63.
- лазы гриоа Репісинит віние / Виополимеры и клетка.— 1905.— 3, № 5.— С. 55—05.

 2. Бобровская М. Т., Латышко Н. Б., Левитина Т. Л. и др. Строение некоторых пептидов, полученных расщеплением каталазы гриба Penicilium vitale стафилококковой протеиназой // Там же.— 1994.— 10, № 2.— С. 49—51.

 3. Козлов Э. А., Гудкова Л. В., Левитина Т. Л. и др. Дополнительное исследование триптических пептидов каталазы гриба Penicilium vitale // Там же.— 1993.— 9, № 1.— С. 20 об
- № 1.— C. 22—25.
- № 1.—С. 22—25.

 4. Левитина Т. Л., Бобровская М. Т., Гусак Н. М. и др. Триптические пептиды малеилкаталазы гриба Penicillium vitale. 2. Строение пептидов // Там же.— № 3.—С. 42—45.

 5. Гуджова Л. В., Кириленко М. Т., Левитина Т. Л., Козлов Э. А. Исследование субъединичной структуры каталазы гриба Penicillium vitale // Укр. биохим. журн.—
 1985.—57, № 4.—С. 29—33.

 6. Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V. et al. Three-dimensional struc-
- ture of catalase from Penicillium vitale of 2 A resolution // J. Mol. Biol. 1986. 188, N 1.- P. 49-61.

Ин-т молекуляр, биологии и генетики АН Украины, Киев Ин-т биохимии им. А. В. Палладина АН Украины, Киев

Получено 20.10.93