Molecular Biomedicine

http://dx.doi.org/10.7124/bc.000B1D

UDC: 577.21:578.24

N.S. Melnichuk¹, V.I. Kashuba¹, M.A. Tukalo¹, P.M. Okhrimenko², I.V. Demchyna³, Z.Yu. Tkachuk¹

- ¹ Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
- ² «Feofaniya» Clinical Hospital of the State Administration of Affairs of Ukraine 21, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
- ³ Public Health Center of the Ministry of Health of Ukraine, 41, Yaroslavska Str., Kyiv, Ukraine, 04071 natalia.melnichuk8@gmail.com

ALTERED EXPRESSION OF GENES RELATED TO INFLAMMATION AND COAGULATION IN PERIPHERAL BLOOD MONONUCLEAR CELLS OF PATIENTS WITH SEVERE COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for COVID-19 pandemic. Hyperinflammation and coagulopathy contribute to disease severity and death in patients infected with SARS-CoV-2. Gene expression analysis in peripheral blood mononuclear cells (PBMCs) is valuable to evaluate disease-associated and drug-response related genes. Aim. In this study, we aimed to investigate the expression of genes related to inflammation and coagulation in PBMCs of patients with severe COVID-19. Methods. The gene expression in PBMCs (52 patients with severe COVID-19 and 59 healthy volunteers) was determined by RT-qPCR. Results. Overexpression of the OAS1, RNASEL, MX1, EIE2AK2, IL8, IL6, IL10, F5 genes and downexpression of the CD4 gene were found out in the PBMCs of SARS-CoV-2 infected patients compared to the healthy volunteers. Using the ROC curve, we found the genes with excellent (IL10, EIF2AK2, F5) and with good (FN1, MX1, RNASEL) diagnostic AUC_{ROC}. Conclusions. The results of this study designated the genes in PBMCs that can be potential candidate biomarkers for diagnosis of SARS-CoV-2-induced hyperinflammation, hypercoagulation, and the evaluation of therapy effectiveness for the patients with severe COVID-19.

Keywords: SARS-CoV-2, PBMCs, gene expression, hyperinflammation, hypercoagulation.

Citation: Melnichuk N.S., Kashuba V.I., Tukalo M.A., Okhrimenko P.M., Demchyna I.V., Tkachuk Z.Yu. (2025) Altered expression of genes related to inflammation and coagulation in peripheral blood mononuclear cells of patients with severe COVID-19. Biopolymers & Cell, 3(41), 210—221. http://dx.doi.org/10.7124/bc.000B1D

© Publisher PH "Akademperiodyka" of the NAS of Ukraine, 2025. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for an ongoing global COVID-19 pandemic [1]. The clinical course of COVID-19 varies from mild symptoms to acute respiratory distress syndrome, hyperinflammation, and coagulation disorder [2]. The patients with COVID-19 have a high risk of developing blood clots (thrombosis) mainly in their lungs, which leads to higher mortality rate [3]. Thus, of April 2024, the SARS-CoV-2-related mortality rate was 7,0 million people worldwide (https://www.worldometers.info/coronavirus/).

Currently, the main SARS-CoV-2 interventions are vaccines. Vaccines reduce the risk of COVID-19, including the risk of severe illness and death among people who are fully vaccinated. Vaccine effectiveness against hospitalizations has remained relatively high over time, although it tends to be slightly lower for older adults and for people with weakened immune systems. (https://www.cdc.gov/ coronavirus/2019-ncov/vaccines/effectiveness/ work.html). However, unvaccinated people, older adults, and people with weakened immune systems remain at risk of COVID-19 and will require effective treatment. An early diagnosis of SARS-CoV-2-induced dysregulation in the immune system would allow doctors to select effective therapy for patients and monitor the effectiveness of their treatment.

The hematopoietic system plays a key role in the observed hyperinflammation and coagulation disorder in COVID-19 ill patients [4]. Biochemical monitoring of inflammation and coagulation state in COVID-19 patients can be performed using following laboratory tests: C-reactive protein, erythrocyte sedimentation rate, lymphocyte count, D-dimer, prolonged prothrombin time [5—8]. However, diagnosing and assessing the effectiveness of treatment of the patients with severe COVID-19 using biochemical laboratory tests requires frequent and large blood sample collections,

which can develop hospital-acquired anemia in patients [9—12]. Moreover, the D-dimer test does not always detect microthrombosis [13], which is a prominent clinical feature of COVID-19 and 91.3% of deceased patients had microthrombosis in the capillaries of the lungs, heart, or other organs [15—16]. The volume of microthrombi is small compared to massive venous thromboses, so the amount of fibrin degradation products entering the systemic circulation may not be sufficient to increase D-dimer [13] significantly. There were also identified the cases of COVID-19-induced thrombosis with a slight increase or within the normal range of D-dimer [17, 18]. Therefore, the search for new candidate biomarkers for diagnosing SARS-CoV-2-induced immune dysregulation (hyperinflammation and hypercoagulation) and evaluating therapy for the patients with severe COVID-19 is relevant.

Gene expression analysis in peripheral blood mononuclear cells (PBMCs) is valuable to evaluate the disease-associated [19—22] and drug-response related genes [23]. Additionally, gene expression analysis enables the determination of multiple genes in a single blood sample. In this study, we investigated the expression of genes related to inflammation and coagulation in PBMCs of the patients with severe COVID-19. In current research, we found overexpression of the OAS1, RNASEL, MX1, EIE2AK2, IL8, IL6, IL10, F5 genes and downexpression of the CD4 gene in PBMCs of the patients with severe COVID-19. ROC analysis of the expression data identified the EIF2AK2, IL10, RNASEL, MX1 F5, FN1 genes in PBMCs that classify SARS-CoV-2-infected and healthy patients with good accuracy and that can be potential biomarkers of hyperinflammation and hypercoagulation in the patients with severe COVID-19.

Materials and Methods

Sample collection, processing and storage

Whole blood samples of the patients with severe COVID-19 (COVID-19 group, n = 52) were collected by the Center for Public Health of the Min-

istry of Health of Ukraine (Kyiv, Ukrainian). All patients had acute respiratory symptoms and were positive for SARS-CoV-2 by a specific qPCR test. Control group was whole blood samples of the healthy volunteers (n=59) that were collected by Feofaniya Clinical Hospital (Kyiv, Ukraine). Sampling was conducted in accordance with the Helsinki declaration and approved by the Ministry of Health of Ukraine in agreement of the Center for Public Health with Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine.

Whole blood samples were collected into EDTA tubes (Vacusera, Turkey) to prevent blood clotting. PBMCs were extracted from the buffy coat by centrifugation of the whole blood sample at 2000 *rpm* for 15 min at +4 °C. TRI-Reagent (Zymo Research, USA) was added to extracted PBMCs (1:3) to prevent RNA degradation and mixed well using Vortex. The PBMCs samples were stored immediately at -80 °C.

Real-Time qPCR Assay

Total RNAs were extracted from PBMCs samples by using a Direct-zol RNA Miniprep Plus (Zymo Research, USA), according to the protocol suggested by the manufacturer. RNA integrity was analyzed in the Microchip electrophoresis system (MCE-202/MultiNA SHIMADZU, Germany) by using a RNA reagent kit for MultiNA (SHIMADZU, Germany), SYBR Green II RNA gel stain (Life Technologies, USA) Ta RNA 6000 Ladder (Life Technologies, USA)). Total RNAs were quantified spectrometrically, and RNA purity was assessed by the 260/280 nm ratio on a MaestroNano Pro Micro-Volume MN-913 spectrophotometer (MAESTROGEN, Taiwan).

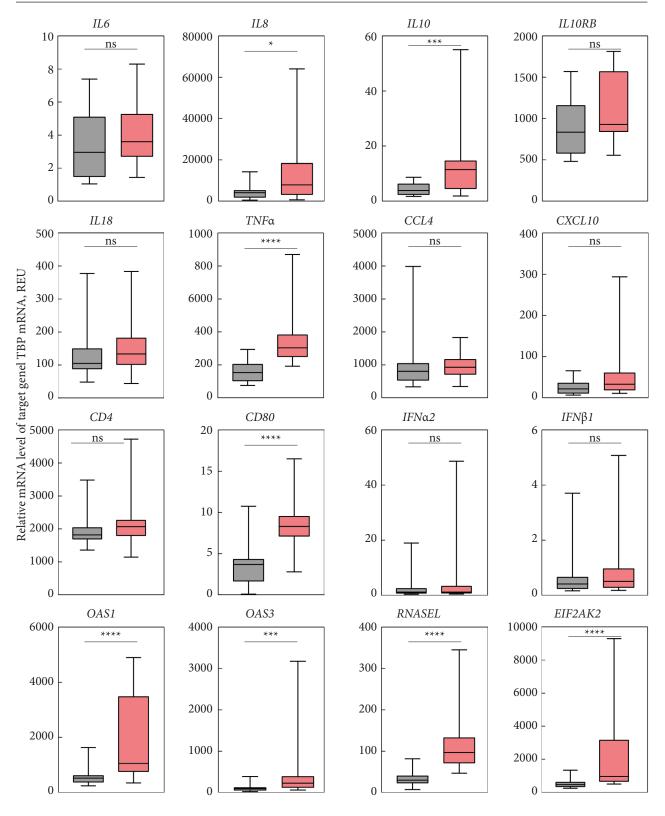
cDNA was synthesized from every total RNA sample by using a Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific, USA). Reverse transcription was conducted using 1 μ g total RNA per sample and the protocol included incubating for 10 min at 25 °C followed by 120 min at 50 °C. Terminate the reaction by heating at 85 °C for 5 min.

mRNA levels of the studied genes were quantified by a Thermal Cycler CFX96 Real-Time system (BIO-RAD, Singapore) using a HOT FIREPol Eva-Green qPCR Mix Plus (Solis BioDyne, Estonia). Human cDNA was amplified with the gene-specific primers (Table 1). The primers sequenced were designed on GenBank database and were synthesized (Invitrogen, USA). Average fold change values were determined by the $2^{(\Delta Ct)}$ method [24]. The mRNA level of all investigated genes were normalized to TBP mRNA as a control and expression of TBP mRNA was taken as 100 expression units. The data were presented as mean \pm SD.

Statistical analysis

The Mann-Whitney U test and ROC curve were performed in Prism version 8.0.1. (GraphPad, La Jolla, CA) for independent data samples. The normality of the distribution was checked according to the Shapiro-Wilk test [25].

Results and Discussion


Altered expression of the investigated genes in PBMCs of patients with severe COVID-19

Dysregulation of the immune system can lead to an inappropriate local and systemic immune responses and subsequently the rapid spread of the virus, leading to severe COVID-19 disease. Therefore, recognizing and improving the immune system disorder should always be part of the diagnosis and treatment protocols of patients with COVID-19 [26]. Therefore, analysis of the gene expression profiles of peripheral blood cells can help us to understand a patient's condition [27—28] and can be potentially a novel tool for the diagnosis of immune system disorder in the patients with severe COVID-19.

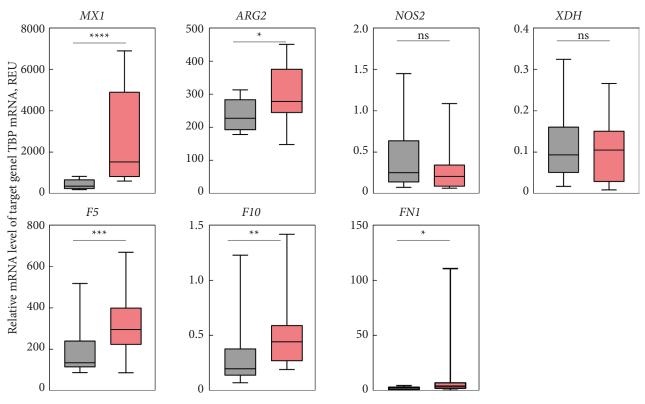

During this research, the goal was to select a small number of genes that could be used for a diagnostic panel describing the patient's condition. At first in our study, we analyzed the mRNA expression of the *IL6*, *IL8*, *IL10*, *IL10RB*, *IL18*, *TNF* α ,

Table 1. Sequences of primers used for RT-qPCR

Gene	Primer	Sequence $(5' \rightarrow 3')$
IL6	Forward	GATTCAATGAGGAGACTTGCC
(interleukin 6)	Reverse	TGTTCTGGAGGTACTCTAGGT
IL8	Forward	ACTCCAAACCTTTCCACCC
(interleukin 8)	Reverse	CAATAATTTCTGTGTTGGCGC
IL10	Forward	AAGACCCAGACATCAAGGC
(interleukin 10)	Reverse	AAGAAATCGATGACAGCGC
IL10RB	Forward	AACAACCCATGACGAAACG
(interleukin 10 receptor, beta)	Reverse	TCTTGTAAACGCACCACAG
IL18	Forward	TGACCAAGTTCTCTTCATTGAC
(interleukin 18)	Reverse	GGTGCATTATCTCTACAGTCAG
TNFa	Forward	CTCTAATCAGCCCTCTGGC
	Reverse	GAGGGTTTGCTACAACATGG
(tumor necrosis factor alpha) CCL4	Forward	AGCTGTGGTATTCCAAACC
	Reverse	TCATACACGTACTCCTGGAC
(chemokine (C-C motif) ligand 4)	Forward	ACGTGTTGAGATCATTGCT
CXCL10		
(chemokine (C-X-C motif) ligand 10)	Reverse	AAATTCTTGATGGCCTTCGA
CD4	Forward	CCTCCTGCTTTTCATTGGGCTAG
(T-cell surface glycoprotein CD4)	Reverse	TGAGGACACTGGCAGGTCTTCT
CD80	Forward	CACTTCTGTTCAGGTGTTATCC
(CD80 molecule)	Reverse	AACAGAAACATTGTGACCACAG
IFNα2	Forward	TCCATGAGATGATCCAGCAG
(interferon alpha 2)	Reverse	CAAGCAGCAGATGAGTCCT
IFNβ1	Forward	GATTCCTACAAAGAAGCAGCA
(interferon beta 1)	Reverse	CTCCCATTCAATTGCCACAG
OAS1	Forward	TCCAAGGTGGTAAAGGGTG
(2'-5' oligoadenylate synthetase 1)	Reverse	TGAGGAAGACAACCAGGTC
OAS3	Forward	AAACTGTCAAGGGAGGCTC
(2'-5' oligoadenylate synthetase 3)	Reverse	AGCAGTCGAGGAAGATGAC
RNASEL (2'-5' -oligoisoadenylate synthetase-	Forward	ATCTAGAGGACCTTGGACG
dependent ribonuclease L)	Reverse	TACTTTGAGCTTTCAGATCCTC
EIF2AK2 (eukaryotic translation initiation factor	Forward	ACATACCGTCAGAAGCAGG
2-alpha kinase 2)	Reverse	GAAATGTAAACCTCCTATCATGTGG
MX1	Forward	TAATAAAGCCCAGAATGCCA
(MX dynamin-like GTPase 1)	Reverse	TTAGAGTCAGATCCGGGAC
ARG2	Forward	ACAATACAGGGTTGCTATCAG
(arginase type II)	Reverse	TAGTCTTCGCCTCTTCCTC
NOS2	Forward	ATGACCTTCAGTATCACAACCT
(nitric oxide synthase 2, inducible)	Reverse	CTGGAGACTTCTTTCCCGT
XDH '	Forward	GGACAGTTGTGGCTCTTGAGGT
(xanthine dehydrogenase)	Reverse	GGAAGGTTGGTTTTGCACAGCC
F5	Forward	FGCCAGACCTTGCTGGAAAATGG
(coagulation factor V)	Reverse	CCAACCTCTGTGTTTAGGAGCC
F10	Forward	TGG TGG AAC CAT TCT GAG CGAG
(coagulation factor X)	Reverse	CGG TTG TGC TTG ATG ACC ACCT
FN1	Forward	ACAACACCGAGGTGACTGAGAC
(fibronectin 1)	Reverse	GGACACAACGATGCTTCCTGAG
TBP	Forward	TGTATCCACAGTGAATCTTGGTTG
(TATA-box binding protein)	Reverse	GGTTCGTGGCTCTCTTATCCTC
(171171 box biliding protein)		

ISSN 1993-6842 (on-line); ISSN 0233-7657 (print). Biopolymers and Cell. 2025. Vol. 41, No. 3

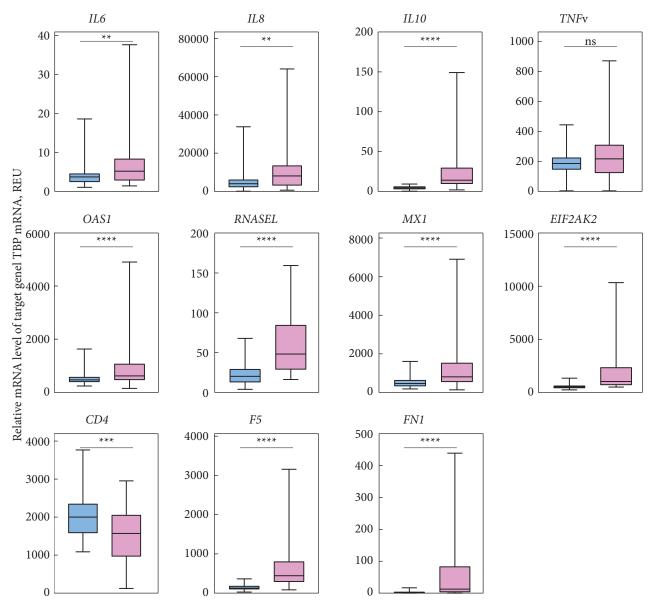


Fig. 1. The mRNA level of studied genes in PBMCs of patients with severe COVID-19: Control (left box on each box chart) — a group of healthy volunteers, n = 20; COVID-19 (right box on each box chart) — a group of patients with severe COVID-19, n = 20: * — P < 0.05 vs Control; ** — P < 0.01 vs Control; *** — P < 0.001 vs. Control; *** — P < 0.0001 vs. Control; ns — statistically not significant vs. Control; REU — relative expression units

CCL4, CXCL10, CD4, CD80, OAS1, OAS3, RNASEL, MX1, EIF2AK2, IFN α 2, IFN β 1, ARG2, NOS2, XDH, F5, F10, FN1 genes in a small study groups (Control group n=20 and COVID-19 group n=20) (Fig. 1). Increased mRNA level of the IL8 (P < 0.05), IL10 (P < 0.001), TNF α (P < 0.0001), CD80 (P < 0.0001), OAS1 (P < 0.0001), OAS3 (P < 0.01), RNASEL (P < 0.0001), MX1 (P < 0.005), F5 (P < 0.001), F10 (P < 0.01), FN1 (P < 0.05) genes was found in PBMCs of the patients with severe COVID-19 group compared to the control group. Therefore, based on the research results, we selected the IL8, IL10, TNF α , OAS1, RNASEL, MX1, EIF2AK2, F5, FN1 genes to con-

tinue investigation of the mRNA expression of genes in a larger study groups (control group n = 59 and COVID-19 group n = 52). Despite the fact that the mRNA level of the *IL6*, *CD4* genes remained unchanged in PBMCs of the patients of COVID-19 group (n = 20) compared to the control group (n = 20) we decided to continue studding expression of this genes because they are promising biomarker considering the literature [29].

Hyperinflammatory state of the patients with severe COVID-19, which contributes to the occurrence of fatal complications and poor prognosis, is associated with the uncontrolled release of cytokines [30—31]. Up-regulated mRNA level of

Fig. 2. The mRNA level of the *IL6*, *TNF*α, *IL8*, *IL10*, *OAS1*, *RNASEL*, *MX1*, *EIF2AK2*, *CD4*, *F5* and *FN1* genes in PBMCs of the patients with severe COVID-19: Control (left box on each box chart) — a group of healthy volunteers, n = 59; COVID-19 (right box on each box chart) — a group of patients with severe COVID-19, n = 52: ** — P < 0.01 vs Control; *** — P < 0.001 vs. Control; *** — P < 0.0001 vs. Control; ns — statistically not significant vs. Control; REU — relative expression units

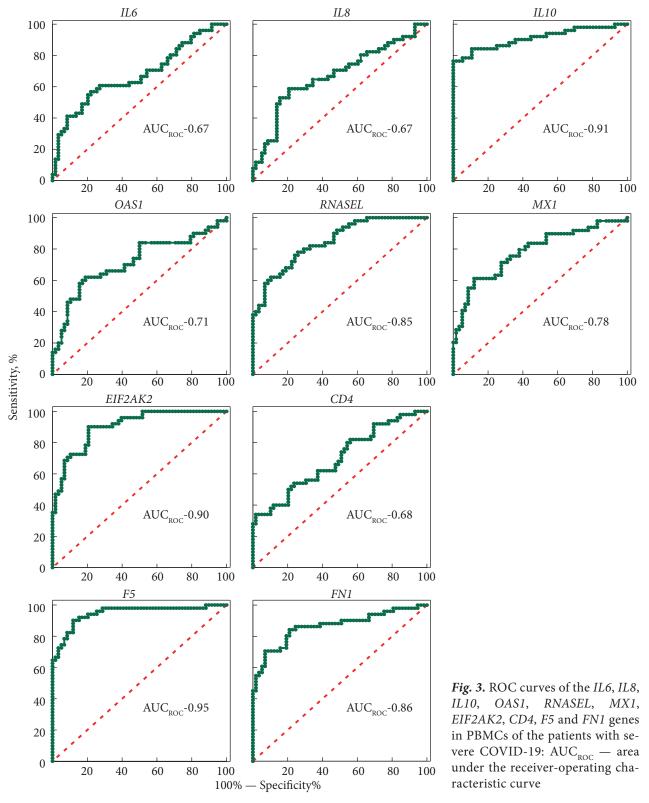
cytokines *IL8* (P < 0.01), *IL6* (P < 0.01), *IL10* (P < 0.0001) was found in PBMCs of the patients of COVID-19 group (n = 52) compared to the control group (n = 59) (Fig. 2). However, the relative

expression of the TNF α gene remained statistically unchanged in the patients with severe COVID-19 compared to the control group. Cytokine overproduction causes the antiviral state of the cell by

stimulating the expression of thousand genes, which are known as interferon-stimulated genes (OAS/RNase L system, MX1 protein and PKR) [32—33]. The mRNA levels of OASI (P < 0.0001), RNASEL (P < 0.0001), MX1 (P < 0.0001), EIF2AK2 (P < 0.0001) in PBMCs of the patients with severe COVID-19 (n = 52) were increase in compared to the control group (n = 59) (Fig. 2). Overexpression of the OAS1, RNASEL, MX1, EIF2AK2, IL8, IL6, IL10 genes induced by SARS-CoV-2 in PBMCs indicates the hyperinflammation state in the patients with severe COVID-19 [31].

Virus-induced dendritic cells migrate to regional lymph nodes, activating cytotoxic (CD8+), helper (CD4+) T, and rare memory T cells, which are able to induce an adaptive immune response at respiratory infection [34]. Both lymphocytosis and lymphopenia were found to be associated with SARS-CoV-2 [35—37]. While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis [38]. CD4 is a glycoprotein that high expressed on CD4 T helper cells and expressed at lower levels on monocytes and some neutrophils [39-41]. We found out downregulation of the CD4 mRNA level (P < 0.001) in the PBMCs of patients with severe COV-ID-19 (n = 52) compared to the control group (n =59) (Fig. 2). Decreased *CD4* expression in the PB-MCs can be associated with lymphopenia and the CD4 gene can be potential biomarker to indicate lymphopenia in the patients with COVID-19.

The patients with COVID-19 have a higher risk of developing blood clots, mainly in the lungs, which is associated with higher mortality [42]. The ~70% of COVID-19 patients, who died, had disseminated intravascular coagulation [43]. The blood clots can be in both venous and arterial circulations, and in small blood vessels. Hypercoagulable state in the patients with COVID-19 has been confirmed in a number of studies that have shown higher levels of D-dimer, fibrinogen, and fibrinogen breakdown products [5], prolonged prothrombin time, international normalized ratio, and thrombin time in the SARS-CoV-2 infected patients [31]. Overexpression of the F5 and FN1


genes (P < 0.0001) was found in the PBMCs of patients with severe COVID-19 (n = 52) compared to a group of healthy volunteers (n = 59) (Fig. 2). Upregulation the F5 and FN1 genes may indicate an increased coagulation state in the patients with severe COVID-19 [5—6].

Receiver operating characteristics (ROC) curves and potential biomarkers

The ability of biomarkers to predict a disease is commonly evaluated using ROC curves. Therefore, we assessed the accuracy and reliability of the potential gene biomarkers to detect SARS-CoV-2-induced hyperinflammation, hypercoagulation, and lymphopenia, plotting ROC curves and calculated AUCs with a 95% confidence interval. The diagnostic parameter of ROC analysis is the area under the ROC curve (AUC_{ROC}) [44]. Among the investigated genes, ROC-analysis of relative gene expression in PBMCs of patients with severe COVID-19 revealed an excellent diagnostic AUC_{ROC} for the IL10 $(AUC_{ROC} = 0.91)$, EIE2AK2 $(AUC_{ROC} = 0.9)$, and F5 $(AUC_{ROC} = 0.95)$ genes (Fig. 3). Besides, FN1 $(AUC_{ROC} = 0.86)$, MX1 $(AUC_{ROC} = 0.78)$, RNASEL $(AUC_{ROC} = 0.85)$ could also be predictive biomarkers. The AUCs of IL6 (AU $\overline{C}_{ROC} = 0.67$), IL8 $(AUC_{ROC} = 0.67)$, OAS1 $(AUC_{ROC} = 0.71)$, CD4 $(AUC_{ROC} = 0.68)$ genes were less than 0.75 indicating their low diagnostic value. The obtained results of the pre-screening suggest that the *IL10*, *EIF2AK2*, MX1, RNASEL genes can be promising candidate biomarkers to indicate hyper-cytokinemia and the F5, FN1 genes — hypercoagulable state in the patients with severe COVID-19.

Conclusions

This study identified nine genes (*IL6*, *IL8*, *IL10*, *OAS1*, *RNASEL*, *MX1*, *EIF2AK2*, *F5*, *FN1*) that are expressed at higher levels and the downexpressed CD4 gene in the PBMCs of the patients with severe COVID-19 compared to the healthy volunteers. We demonstrated the genes with the excellent (*IL10*, *EIF2AK2*, *F5*) and good (*FN1*, *MX1*, *RNASEL*)

diagnostic AUC_{ROC} . Overall, our results of prescreening are an important first stage towards identifying candidate biomarkers in the PBMCs for the diagnosis of hyperinflammation and hypercoagulation of the patients with severe COVID-19.

Funding. A part of this work was funded by the National Research Foundation of Ukraine in the framework of a project "Combined test sys-

tems for diagnosis and analysis of innate immunity gene expression upon dangerous viral infections" (2020.01/0091), IMBG Simons Foundation Grant for Ukrainian institutions № SFI-PD-Ukraine-00017453 and by scientific program of the National Academy of Sciences of Ukraine «Study of the expression of innate immunity genes and their regulation in particularly dangerous viral diseases» (0121U112029).

REFERENCES

- 1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19(3):141—54.
- 2. *Merad M, Martin JC.* Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. *Nat Rev Immunol.* 2020; **20**(6):355—62.
- 3. *Malas MB*, *Naazie IN*, *Elsayed N*, *et al.*, *and Clary B*. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. *EClinicalMedicine*. 2020; **29**:100639.
- 4. Lüke F, Orsó E, Kirsten J, et al., and Heudobler D. Coronavirus disease 2019 induces multi-lineage, morphologic changes in peripheral blood cells. EJHaem. 2020; 1(1):376—83.
- 5. Rouhezamin MR, Haseli S. Diagnosing Pulmonary Thromboembolism in COVID-19: A Stepwise Clinical and Imaging Approach. Acad Radiol. 2020; 27(6):896—7.
- 6. Bikdeli B, Madhavan MV, Jimenez D, et al., and Lip GYH. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(23):2950—73.
- 7. Sidhwani SK, Mirza T, Khatoon A, et al., and Nashwan AJ. Inflammatory markers and COVID-19 disease progression. J Infect Public Health. 2023; **16**(9):1386—91.
- 8. *Moorthy S, Koshy T, Kumar MK, Silambanan S.* Role of inflammatory and liver function markers in assessing the prognosis of patients with COVID-19. *World Acad Sci J.* 2021; **3**(6):52.
- 9. Wu Y, Spaulding AC, Borkar S, et al., and Franco PM. Reducing Blood Loss by Changing to Small Volume Tubes for Laboratory Testing. Mayo Clin Proc Innov Qual Outcomes. 2020; 5(1):72—83.
- 10. Mann SA, Williams LA 3rd, Marques MB, Pham HP. Hospital-acquired anemia due to diagnostic and therapy-related blood loss in inpatients with myasthenia gravis receiving therapeutic plasma exchange. J Clin Apher. 2018; 33(1):14—20.
- 11. *Koch CG, Li L, Sun Z, et al., and Henderson JM.* Hospital-acquired anemia: prevalence, outcomes, and healthcare implications. *J Hosp Med.* 2013; **8**(9):506—12.
- 12. Tezcan B, Kosovalı BD, Can M, et al., and Mutlu NM. Incidence and predictors of hospital acquired anemia in COVID-19 ARDS patients hospitalized in intensive care unit. Transfus Apher Sci. 2025; 64(4):104173.
- 13. Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. Am J Hematol. 2019; 94(7):833—9.
- 14. *Chen W, Pan JY.* Anatomical and Pathological Observation and Analysis of SARS and COVID-19: Microthrombosis Is the Main Cause of Death. *Biol Proced Online*. 2021; **23**(1):4.
- 15. *Wadowski PP, Panzer B, Józkowicz A, et al., and Koppensteiner R.* Microvascular Thrombosis as a Critical Factor in Severe COVID-19. *Int J Mol Sci.* 2023; **24**(3):2492.
- 16. Parra-Medina R, Herrera S, Mejia J. Systematic Review of Microthrombi in COVID-19 Autopsies. Acta Haematol. 2021; **144**(5):476—83.
- 17. Javorac J, Živanović D, Stojkov S, et al., and Savić N. COVID-19 associated pulmonary embolism with D-dimer values within the referent range: a case report and review of the literature. Eur Rev Med Pharmacol Sci. 2021; 25(24):7971—5.
- 18. *Hannoodee H, Khanam V, Taheri Abkouh D, et al., and Kulairi ZI.* Acute pulmonary embolism in a patient with a normal D-Dimer. *Chest.* 2022; **162**(4):A1141.

- 19. Achiron A, Gurevich M, Friedman N, et al., and Mandel M. Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol. 2004; 55(3):410—7.
- 20. *Gladkevich A, Kauffman HF, Korf J.* Lymphocytes as a neural probe: potential for studying psychiatric disorders. *Prog Neuropsychopharmacol Biol Psychiatry.* 2004; **28**(3):559—76.
- 21. *Tang Y, Nee AC, Lu A, et al., and Sharp FR.* Blood genomic expression profile for neuronal injury. *J Cereb Blood Flow Metab.* 2003; **23**(3):310—9.
- 22. Twine NC, Stover JA, Marshall B, et al., and Burczynski ME. Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003; 63(18):6069—75.
- 23. Burczynski ME, Twine NC, Dukart G, et al., and Dorner AJ. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res. 2005; 11(3):1181—9.
- 24. *Livak KJ, Schmittgen TD.* Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods.* 2001; **25**(4):402—8.
- 25. Goni R, García P, Foissac S. The qPCR data statistical analysis. Integromics White Paper. 2009; 1—9.
- 26. *Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, et al., and Rafiei A.* The role of dysregulated immune responses in COVID-19 pathogenesis. *Virus Res.* 2020; **290**:198197.
- 27. *Takamura T, Honda M, Sakai Y, et al., and Kaneko S.* Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. *Biochem Biophys Res Commun.* 2007; **361**(2):379—84.
- 28. *Komura T, Sakai Y, Harada K, et al., and Kaneko S.* Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. *Cancer Sci.* 2015; **106**(6):672—86.
- 29. *Chen G, Wu D, Guo W, et al., and Ning Q.* Clinical and immunological features of severe and moderate coronavirus disease 2019. *J Clin Invest.* 2020; **130**(5):2620—9.
- 30. *Shi Y, Wang Y, Shao C, et al., and Melino G.* COVID-19 infection: the perspectives on immune responses. *Cell Death Differ.* 2020; **27**(5):1451—4.
- 31. Ye Q. Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020; **80**(6):607—13.
- 32. Villalón-Letelier F, Brooks AG, Saunders PM, et al., and Reading PC. Host Cell Restriction Factors that Limit Influenza A Infection. Viruses. 2017; 9(12):376.
- 33. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al., and tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; **181**(5):1036—1045.e9.
- 34. *Kim TS*, *Braciale TJ*. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. *PLoS One*. 2009; **4**(1):e4204.
- 35. *Huang C, Wang Y, Li X, et al., and Cao B.* Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020; **395**(10223):497—506.
- 36. *Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al., and Koutsoukou A.* Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. *Cell Host Microbe.* 2020; **27**(6):992—1000.e3.
- 37. Tan L, Wang Q, Zhang D, et al., and Miao H. Correction: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020; 5(1):61.
- 38. *Shouman S, El-Kholy N, Hussien AE, et al., and El-Badri N.* SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. *Cell Commun Signal.* 2024; **22**(1):349.
- 39. Zhen A, Krutzik SR, Levin BR, et al., and Kitchen SG. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol. 2014; 88(17):9934—46.
- 40. *Kazazi F, Mathijs JM, Foley P, Cunningham AL*. Variations in CD4 expression by human monocytes and macrophages and their relationships to infection with the human immunodeficiency virus. *J Gen Virol.* 1989; **70**(10):2661—72.
- 41. *Biswas P, Mantelli B, Sica A, et al., and Beretta A.* Expression of CD4 on human peripheral blood neutrophils. *Blood.* 2003; **101**(11):4452—6.
- 42. *Malas MB*, *Naazie IN*, *Elsayed N*, *et al.*, *and Clary B*. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. *EClinicalMedicine*. 2020; **29**:100639.

- 43. *Tang N, Li D, Wang X, Sun Z.* Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. *J Thromb Haemost.* 2020; **18**(4):844—7.
- 44. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010; **112**(4):1023—40. Received 30.07.2025

Н.С. Мельнічук¹, В.І. Кашуба¹, М.А. Тукало¹, П.М. Охріменко², І.В. Лемчишина³, З.Ю. Ткачук¹

- ¹ Інститут молекулярної біології і генетики НАН України вул. Академіка Заболотного, 150, Київ, Україна, 03143
- ² Клінічна лікарня «Феофанія» Державного управління справами вул. Академіка Заболотного, 21, Київ, Україна, 03143
- ³ Центр громадського здоров»я МОЗ України вул. Ярославська, 41, Київ, Україна, 04071 natalia.melnichuk8@gmail.com

ЗМІНЕНА ЕКСПРЕСІЯ ГЕНІВ ПОВ'ЯЗАНИХ ІЗ ЗАПАЛЕННЯМ ТА КОАГУЛЯЦІЄЮ В МОНОНУКЛЕАРНИХ КЛІТИНАХ ПЕРИФЕРІЙНОЇ КРОВІ ПАЦІЄНТІВ З ВАЖКИМ ПЕРЕБІГОМ COVID-19

Тяжкий гострий респіраторний синдром коронавірусу 2 (SARS-CoV-2), вірус, що спричиняє коронавірусну хворобу 2019 (COVID-19), респіраторне захворювання, що відповідає за пандемію COVID-19. Гіперзапалення та коагулопатії сприяють тяжкості захворювання та смерті пацієнтів, інфікованих SARS-CoV-2. Аналіз експресії генів у мононуклеарних клітинах периферичної крові (МКПК) є цінним для оцінки генів, пов'язаних із захворюванням та реакцією на ліки. *Мета.* У цьому дослідженні ми мали на меті дослідити експресію генів, пов'язаних із запаленням та коагуляцією у МКПК пацієнтів з гострою формою COVID-19. *Методи.* Експресію генів у МКПК (52 пацієнтів з тяжкою формою COVID-19 та 59 здорових добровольців) визначали за допомогою RT-qPCR. *Результатии*. Виявлено надмірну експресію *OAS1, RNASEL, MX1, EIE2AK2, IL8, IL6, IL10, F5* генів та знижену експресію гена *CD4* у МКПК пацієнтів, інфікованих SARS-CoV-2, порівняно зі здоровими добровольцями. Використовуючи ROC-криву, ми виявили гени з відмінним (*IL10, EIF2AK2, F5*) та з добрим (*FN1, MX1, RNASEL*) діагностичним AUC_{ROC}. *Висновки*. Результати цього дослідження вказують на гени в МКПК, які можуть бути потенційними кандидатами на біомаркери для діагностики гіперзапалення, гіперкоагуляції, викликаних SARS-CoV-2, та оцінки ефективності терапії у пацієнтів з тяжким перебігом COVID-19.

Ключові слова: SARS-CoV-2, МКПК, експресії генів, гіперзапалення, коагулопатії.