
139ISSN 1993-6842 (on-line); ISSN 0233-7657 (print). Biopolymers and Cell. 2025. Vol. 41, No. 2
T.G. Maiula, S.M. Yarmoliuk, I.I. Konvaliuk

Bioinformatics

http://dx.doi.org/10.7124/bc.000B18
UDC 577.004.9

T.G. Maiula, S.M. Yarmoliuk, I.I. Konvaliuk, V.A. Kunakh
Institute of Molecular Biology and Genetics, NAS of Ukraine  

150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143  
t.h.maiula@imbg.org.ua

IN SILICO PREDICTION OF NEUROPROTECTIVE 
PROPERTIES OF NATURAL COMPOUNDS USING 
SCUTELLARIA BAICALENSIS AS AN EXAMPLE

Aim. To develop, optimize, and evaluate effective in silico models for predicting the neuroprotective and anxiolytic 
properties of natural compounds using Scutellaria baicalensis as a case study. Methods. Construction and validation 
of machine learning models. Results. Three machine learning models, constructed using the Random Forest, XGBoost, 
and LightGBM algorithms, were developed for in silico prediction of the neuroprotective and anxiolytic activity of 
natural compounds. The classifiers achieved an accuracy of 75—78%. A binary classification approach was proposed, 
incorporating molecular descriptors and structural fingerprints, which, after preprocessing and optimization, enabled 
the identification of compounds with potential neuroprotective activity. The study confirms the effectiveness of these 
modeling approaches in predicting the neuroprotective, anxiolytic properties of S. baicalensis compounds. Application 
of the models to known phytochemicals from this plant verified previously reported bioactive substances: 46 out of 
78 analyzed compounds were predicted to be potentially active. Conclusions. The in silico prediction of neuroprotec-
tive properties of bioactive compounds shows promise for screening and identifying phytocomplexes, particularly for 
applications in modern medicine such as the prevention and management of PTSD and other neurological disorders.
Keywords: in silico, machine learning, molecular descriptors, Scutellaria baicalensis, neuroprotective properties.

Introduction

Modern pharmacology is rapidly evolving, em-
ploying advanced methods for the analysis and 
prediction of the biological activity of both syn-
thetic drugs and natural compounds. The tradi-

tional experimental techniques, such as in vitro 
and in vivo testing, despite their high accuracy, are 
associated with substantial resource, time, and fi-
nancial costs, as well as bioethical concerns related 
to the use of laboratory animals and challenges in 
reproducibility. These limitations have stimulated 
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the development of alternative research approa-
ches, among which in silico methods have emerged 
as leading tools. These approaches allow us to ef-
fectively reduce experimental costs, accelerate the 
acquisition of results, and to eliminate the ethical 
issues associated with animal testing. In silico 
methods include virtual screening, molecular 
docking, quantitative structure-activity relation-
ship (QSAR) analysis, and the prediction of 
ADME T properties [1]. These techniques are in-
creasingly applied in the identification of bioactive 
compounds, including novel antibiotics in res-
ponse to resistance, protein kinase inhibitors, and 
other therapeutics. In contemporary pharmaco-
logical research, in silico tools such as molecular 
docking and virtual screening are widely used to 
explore ligand-target interactions, thereby redu-
cing the need for complex in vitro and in vivo ex-
periments [2]. These technologies are also crucial 
in the study of natural products, especially when 
plant-based raw materials are scarce or difficult to 
access. Despite the existence of many herbal pre-
pa rations with proven efficacy, their large-scale ap-
plication is often limited by restricted availability 
of source material. In such cases, the application of 
in silico methods enables the rapid identification of 
promising bioactive molecules for further experi-
mental validation [3].

One of the most promising medicinal plants 
with a broad therapeutic profile is Scutellaria bai-
calensis. This perennial herb from the Lamiaceae 
family has long been used in traditional medicine 
in East Asian countries and is known for its pro-
nounced neuroprotective and anxiolytic effects, as 
well as antioxidant, anti-inflammatory, antiviral, 
antibacterial, and anticancer activities [4—6]. 
Among its key constituents, the flavonoids baica-
lin and baicalein have been shown to exert neuro-
protective and anxiolytic effects through interac-
tion with GABAA receptors (gamma-aminobutyric 
acid type A). Baicalin functions as a positive allos-
teric modulator at the benzodiazepine site GABAA 
receptors, selectively binding to subunits contai-
ning α2 and α3, thereby providing anxiolytic ef-
fects without significant sedation or muscle relaxa-

tion [7]. Baicalein, on the other hand, primarily 
targets non-benzodiazepine sites of the GABAA 
receptor and demonstrates similar effects, with ad-
ditional neuroprotective properties and minimal 
impact on the serotonergic system [8]. Further-
more, baicalein has been shown to activate the 
TrkB/AKT signaling pathway, promoting synap-
togenesis and neuroprotection [9]. Considering 
the current public health challenges in Ukraine — 
particularly the rise in cases of post-traumatic 
stress disorder (PTSD) and neurological disorders 
among military personnel and civilians affected by 
the ongoing war — the therapeutic potential of 
S. baicalensis bioactive compounds is of particular 
interest. The previous research has highlighted the 
plant’s neuroprotective and anxiolytic mechanisms 
[6, 10—12]. However, due to the limited availabi li-
ty of raw plant material — S. baicalensis being na-
tu rally distributed primarily in East Asia (China, 
Korea, Japan) and partially in Russia [4] — the 
practical application and study of this plant remain 
uncommon in Ukraine. Therefore, to predict the 
biological activity, this study applied machine 
learning models: RandomForest, XGBoost, and 
LightGBM. These in silico models are highly effec-
tive for classifying complex pharmacological data-
sets, as they are capable of capturing nonlinear re-
lationships between molecular descriptors and 
bio lo gical activity, while maintaining robustness 
against overfitting [13, 14].

RandomForest is an ensemble method based on 
constructing a large number of decision trees and 
averaging their outputs to achieve strong generali-
zation. XGBoost is a gradient boosting algorithm 
that sequentially builds decision trees, where each 
subsequent tree corrects the errors of the previous 
one through gradient descent optimization [13]. 
LightGBM is a fast and efficient gradient boosting 
framework that uses a leaf-wise tree growth stra te-
gy, providing high computational speed and accu-
racy when working with large volumes of data. It is 
considered one of the most powerful machine 
learning tools for biomedical research [14].

The use of these models enables rapid and effec-
tive identification of promising compounds with 
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neuroprotective and anxiolytic properties, which 
was verified using a test set of known natural com-
pounds derived from S. baicalensis [15]. The fur-
ther application of in silico approaches will facili-
tate the discovery of additional active candidates, 
ensure more rational use of natural plant resour-
ces, and enhance the efficiency of future experi-
mental research.

Therefore, the aim of this study was to develop 
and optimize in silico models for predicting the 
neuroprotective and anxiolytic properties of natu-
ral compounds, using Scutellaria baicalensis as a 
representative example.

Materials and Methods
To construct machine learning models for predic-
ting neuroprotective and anxiolytic activity, the 
data were obtained from the ChEMBL database — 
an open-access repository of bioactive small mo le-
cu les with known activity against various biologi-
cal targets such as receptors and enzymes [1]. Ac-
cess to the database was provided via the ChEMBL 
API. The responses from the API were returned in 
JSON (JavaScript Object Notation) format, a wide-
ly used data exchange standard suitable for parsing 
in Python. Computational operations were carried 
out using the cloud-based platform Google Colab, 
which supports integration with all the Python lib-
raries used in this study and enables efficient cal-
culations and predictions on server infrastructure, 
eliminating the need for local computational re-
sources.

A list of mechanisms of action pharmacologi-
cally associated with neuroprotective and anxio-
lytic activity was compiled (including, for example, 
“Dopamine D2 receptor antagonist”, “GABA recep-
tor agonist”, “Serotonin transporter inhibitor”, “Ser-
otonin 1a (5-HT1a) receptor agonist”, “Muscarinic 
acetylcholine receptor M1 agonist”, etc.). Using the 
ChEMBL API, a dataset of compounds matching 
these mechanisms was ret rieved. A total of 104 
such mechanisms were selected, and compounds 
acting as agonists, antagonists, or inhibitors of the 
respective targets were collected based on their 

ChEMBL IDs. For each selected molecule, IC50 
values were extracted. After filtering and dedupli-
cation, the final dataset consisted of 687 com-
pounds. An example of the results is presented in 
the Table 1.

To facilitate further analysis, IC50 values were 
converted to pIC50 using Equation 1.

pIC50 = –log10(IC50 × 10–9). (1)

To facilitate classification, the pIC50 value was 
used to define bioactivity thresholds: molecules 
with pIC50 ≥ 6 were considered active (class 1), 
while all others were assigned to the inactive class 
(class 0). Due to class imbalance, oversampling 
was applied to the active class by duplicating those 
molecules in order to reduce model bias toward 
the majority class.

For each molecule, the corresponding SMILES 
notation was retrieved using its ChEMBL ID and 
used to calculate molecular descriptors [16]. The 
«RDKit» library, an open-source cheminformatics 
framework for Python, was employed to generate 
these descriptors based on SMILES structures. The 
following descriptors were computed: MW (mo-
lecular weight), TPSA (topological polar surface 
area), LogP (lipophilicity), and the number of hy-
drogen bond donors and acceptors (NumDonors / 
NumAcceptors). Additionally, molecular finger-
prints were generated using both the Molecular 
ACCess System (MACCS keys, 167 bits) and Mor-

Table 1. Molecules retrieved via ChEMBL API 
according to mechanisms of action

molecule_chembl_id mechanism_of_action

CHEMBL2359670 Dopamine D2 receptor antagonist
CHEMBL1201003 Serotonin 1b (5-HT1b) receptor 

agonist
CHEMBL3989558 Serotonin 1a (5-HT1a) receptor 

partial agonist
CHEMBL1214124 Glutamate receptor ionotropic 

AMPA antagonist
CHEMBL972 Monoamine oxidase B inhibitor



142 ISSN 1993-6842 (on-line); ISSN 0233-7657 (print). Biopolymers and Cell. 2025. Vol. 41, No. 2

T.G. Maiula, S.M. Yarmoliuk, I.I. Konvaliuk et al.

gan fingerprints (ECFP4, 2048 bits). MACCS is a 
predefined set of structural keys, where each bit 
indicates the presence or absence of specific che-
mi cal substructures. Morgan fingerprints are cir-
cular fingerprints that capture the atomic environ-
ment within a specified radius. In this case, binary 
vectors of length 2048 bits were generated using 
ECFP4 (Extended-Connectivity Fingerprints with 
radius = 2), a widely accepted standard in QSAR 
modeling and bioactivity prediction due to their 
sensitivity to molecular structure. The use of both 
molecular descriptors and structural fingerprints 
as input features is a common approach for pre-
dicting toxicity, bioactivity, and other physico-
chemical or pharmacological properties.

A total of 2220 descriptors were generated per 
molecule. Prior to model construction, data pre-
processing included the removal of entries with 
invalid SMILES or errors during descriptor ge ne-
ra tion. Such preprocessing is recommended to im-
prove model generalization and reduce the risk of 
overfitting [16].

Machine learning models based on the Random 
Forest algorithm were built with the follo wing pa-
rameter settings: «n_estimators» = 100 (i.e., 100 de-
cision trees), and «random_state» = 42. This con-
figuration provides a robust baseline for the current 
dataset. While increasing the «n_estimators» pa-
rameter can enhance model stability, it does not al-
ways lead to significant performance improvements 
and may considerably increase computation time 
and memory usage. The XGBoost-ba sed model was 
configured with «n_estimators» = 100, «learning_
rate» = 0.1 (initial learning rate), and «max_depth» = 
= 5 (maximum depth of each tree). The LightGBM-
based model was assigned the same hyperparame-
ters as XGBoost. These parameter values are com-
monly re com mended as initial settings in official 
documentation and are widely used in practice.

All models were implemented in Python using 
the «scikit-learn», «xgboost», and «lightgbm» lib-
raries, and executed within the Google Colab envi-
ronment.

For in silico modeling, the dataset was split into 
training (80%) and test (20%) subsets using the 

«stratify» = y parameter to preserve class balan-
ce — an important consideration in binary classi-
fication problems involving active (1) and inacti-
ve (0) classes. In addition, 5-fold cross-validation 
was performed to minimize the influence of ran-
dom variations and improve the reliability of per-
formance estimates.

The performance of the models was evaluated 
using the following metrics:

Accuracy — the proportion of correctly classi-
fied observations (Equation 2):

Accuracy =  TP + TN (2)TP + TN + FP + FN

Precision — the proportion of correctly classi-
fied positive observations (Equation 3):

Precision =  TP (3)TP + FP

Recall — the ability of the model to identify all 
positive observations (Equation 4):

Recall =  TP (4)TP + FN

F1-score — the harmonic mean of precision and 
recall (Equation 5): 

F1 = 2 × Precision × Recall (5)Precision + Recall

TP — true positives, TN — true negatives, 
FP — false positives, FN — false negatives pre-
dictions.

The average activity score (Average_Prediction) 
was calculated as the simple mean of predictions from 
all three models using Equation 6. The input values 
were either probabilities or binary outputs, represen-
ting the predicted potential activity of the compounds 
with respect to the studied biological property.

Average Prediction = Prf + Pxgb + Plgbm (6)3
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Prf — prediction of the Random Forest model 
(0 or 1), Pxgb — prediction of the XGBoost model 
(0 or 1), Plgbm — prediction of the LightGBM 
model (0 or 1).

Results and Discussion
In the initial stage of the study, the three aforemen-
tioned models based on Random Forest, XGBoost, 
and LightGBM were evaluated. All models de-
mon strated comparable accuracy values. The clas-
sification results obtained on the test dataset are 
presented in the Table 2.

After performing cross-validation, the accuracy 
of the XGBoost- and LightGBM-based models in-
creased to 77.03 and 77.21%, respectively.

All models demonstrated better precision for 
class 0 (inactive) and higher recall for class 1 (ac-
tive). The differences between the models were sta-
tistically insignificant, allowing the selection of a 
primary model to be based on feature importance 
analysis. The minor variation in accuracy indicates 
consistency and stability across the models, which 
supports the reliability of the applied approach.

Feature importance analysis was conducted by 
identifying the top descriptors for each model in-
dividually. This type of analysis is commonly used 
in research to compare the relevance of features 
derived from Morgan fingerprints [16] or to select 
the most influential descriptors from the full fea-
ture set.

This analysis led to several important observa-
tions. The Random Forest-based model assigned 
the greatest weight to the LogP descriptor, reflec-
ting compound hydrophobicity, along with mo-
lecular weight (MolWt) and a number of MACC S 
fingerprints. In contrast, XGBoost identified 
Morgan fingerprints (particularly Morgan_1536 
and Morgan_428), which describe molecular 
fragments based on local structures, as the most 
informative features. LightGBM demonstrated a 
hyb rid approach: its top features included both 
general structural descriptors (MolWt, LogP, 
TPSA) and structural fingerprints (MACCS and 
Morgan). These results confirm that each model 

interprets the feature importance differently, offe-
ring opportunities for their complementary use. 
A combined approach employing both LightGB M 
and XGBoost algorithms appears lo gi cal, since 
despite their nearly identical classification accu-
racy, the models rely on different groups of fea-
tures. LightGBM prioritized global physico-
chemical properties — MolWt, LogP, TPSA, 
NumHAcceptors — while XGBoost based its pre-
dictions primarily on structural fingerprints such 
as Morgan_1536, Morgan_428, and MACCS_101, 
which capture local molecular fragments. This 
complementarity enhances the potential of in-
tegrated (ensemble) strategies, enab ling broader 
coverage of structural-functional compound 
characteristics.

On the other hand, as illustrated in Fig. 1, the 
top descriptors identified by the Random Forest 

Table 2. Classification results for the test 
dataset of the models

Metric Random Forest XGBoost LightGBM

Class 0 1 0 1 0 1
Precision 0,87 0,66 0,87 0,65 0,87 0,65
Recall 0,68 0,86 0,66 0,86 0,66 0,86
f1-score 0,76 0,75 0,75 0,74 0,75 0,74
Accuracy 75,36% 74,64% 74,64%

Table 3. List of descriptors with significant  
influence on the predicted variable

No. Random Forest XGBoost LightGBM

1 LogP Morgan_1536 MolWt
2 MACCS_125 MACCS_101 LogP
3 MACCS_144 Morgan_428 TPSA
4 MolWt MACCS_126 MACCS_99
5 MACCS_103 MACCS_116 MACCS_109
6 MACCS_82 MACCS_105 NumHAcceptors
7 MACCS_134 MACCS_54 MACCS_127
8 MACCS_145 Morgan_625 Morgan_322
9 MACCS_81 Morgan_52 MACCS_166

10 TPSA Morgan_1 Morgan_799
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model demonstrated more pronounced indivi-
dual importance. For this reason, all three trained 
models were preserved. The «joblib» library was 
used to serialize the trained Python model ob-
jects into «.pkl» files, allowing future reuse with-
out retra ining [17].

The next stage of the study aimed to verify the 
predictive capacity of the constructed models in 
identifying neuroprotective and anxiolytic proper-
ties of natural compounds. For this purpose, a test 
set was compiled based on the phytochemical 
composition of S. baicalensis, according to pre-
viously published data [4]. The test set included 
natural compounds characteristic of S. baicalensis.

Based on available chemical names and struc-
tural formulas [4], 78 out of 126 compounds were 
described using SMILES notation. SMILES were 
constructed using BIOVIA Draw 2018 and Data-
Warrior (v06.04.02), which allow for the creation, 
visualization, and export of 2D molecules, as well 
as calculation of basic molecular properties. The 
remaining 48 compounds could not be trans-
formed into SMILES format due to overly generic 
names or ambiguous structural representations in 
the source material.

For each of the 78 compounds, molecular de-
scriptors were calculated using the same pipeline 
as in the training set — excluding IC50, pIC50, 
and activity class labels. Calculations were per-
formed using the «RDKit» library. Prior to predic-
tion, the structure of the new data (78 compounds) 

Fig. 1. Histogram of the most influential descriptors for 
Random Forest

Fig. 2. Histogram of the most influential descriptors for 
XGBoost

Fig. 3. Histogram of the most influential descriptors for 
LightGBM
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Table 4. Compounds of Scutellaria baicalensis predicted to be active  
by at least one of the trained models (Random Forest, XGBoost, LightGBM)

No. Name Molecular 
formula MW Plant part Prf Pxgb Plgbm Average_

Prediction

1 4’-Hydroxyacetophenone C8H8O2 136 Root 0 1 1 0,6666667
2 4’-Hydroxywogonin (5,7,4’-Trihydroxy-8-

methoxyflavone)
C16H12O6 300 Root 0 1 1 0,6666667

3 Scutevulin (5,7,2’-Trihydroxy-8-
methoxyflavone)

C16H12O6 300 Root 0 1 1 0,6666667

4 (2S)-5,7,4’-Trihydroxy-6-
methoxyflavanone

C16H14O6 302 Root 0 1 1 0,6666667

5 Dihydrooroxylin A ((2S)-5,7-Dihydroxy-
6-methoxyflavanone)

C16H14O5 286 Root 0 1 1 0,6666667

6 5,7,4’-Trihydroxy-6-methoxyflavone C16H12O6 300 Aerial part 0 1 1 0,6666667
7 Tenaxin II (5,7,2’-Trihydroxy-6-

methoxyflavone)
C16H12O6 300 Root 0 1 1 0,6666667

8 Syringaldehyde (4-Hydroxy-3,5-
dimethoxybenzaldehyde)

C9H10O4 182 Root 0 1 1 0,6666667

9 Vanillin (4-Hydroxy-3-
methoxybenzaldehyde)

C8H8O3 152 Root 0 1 1 0,6666667

10 Acetosyringone (4’-Hydroxy-3’,5’-
dimethoxyacetophenone)

C10H12O4 196 Root 1 0 1 0,6666667

11 7-Methoxychrysin (5-Hydroxy-7-
methoxyflavone)

C16H12O4 268 Aerial part 0 1 1 0,6666667

12 5,8,2’-Trihydroxy-7-methoxyflavone C16H12O6 300 Root 0 1 1 0,6666667
13 7-O-Methylwogonin (5-Hydroxy-7,8-

dimethoxyflavone)
C17H14O5 298 Root 0 1 1 0,6666667

14 (2S)-5,4’-Dihydroxy-7-methoxyflavanone C16H14O5 286 Aerial part 0 1 1 0,6666667
15 (2S)-7,2’,6’-Trihydroxy-5-

methoxyflavanone
C16H14O6 302 Root 0 1 1 0,6666667

16 (2S)-7-Hydroxy-5-methoxyflavanone C16H14O4 270 Root 0 1 1 0,6666667
17 5,7,6’-Trihydroxy-2’-methoxyflavone C16H12O6 300 Root 0 1 1 0,6666667
18 (2R,3R)-3,5,7,2’,6’-Pentahydroxyflavanone C15H12O7 304 Root 0 1 1 0,6666667
19 Protocatechuic acid 

(3,4-Dihydroxybenzoic acid)
C7H6O4 154 Root 0 1 1 0,6666667

20 p-Hydroxybenzoic acid C7H6O3 138 Root 0 1 1 0,6666667
21 Viscidulin I 

(5,7,2’,6’-Tetrahydroxyflavonol)
C15H10O7 302 Root 0 1 1 0,6666667

22 (2S)-5,7,2’,6’-Tetrahydroxyflavanone C15H12O6 288 Root 0 1 1 0,6666667
23 (+)-Eriodictyol ((2S)-5,7,3’,4’-

Tetrahydroxyflavanone)
C15H12O6 288 Root 0 1 1 0,6666667
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No. Name Molecular 
formula MW Plant part Prf Pxgb Plgbm Average_

Prediction

24 p-Hydroxybenzaldehyde C7H6O2 122 Root 0 1 1 0,6666667
25 Protocatechuic aldehyde 

(3,4-Dihydroxybenzaldehyde)
C7H6O3 138 Root 0 1 1 0,6666667

26 Isocarthamidin ((2S)-5,7,8,4’-
Tetrahydroxyflavanone)

C15H12O6 288 Leaf; Root 0 1 1 0,6666667

27 Carthamidin ((2S)-5,6,7,4’-
Tetrahydroxyflavanone)

C15H12O6 288 Leaf; Root 0 1 1 0,6666667

28 5,7-Dihydroxy-6,8-dimethoxyflavone C17H14O6 314 Root 0 1 0 0,3333333
29 5,7,2’-Trihydroxy-6,8-dimethoxyflavone C17H14O7 330 Root 0 1 0 0,3333333
30 Tenaxin I (5,2’-Dihydroxy-6,7,8-

trimethoxyflavone)
C18H16O7 344 Root 0 1 0 0,3333333

31 5,8-Dihydroxy-6,7-dimethoxyflavone C17H14O6 314 Root 0 1 0 0,3333333
32 5,8,2’-Trihydroxy-6,7-dimethoxyflavone C17H14O7 330 Root 0 1 0 0,3333333
33 Viscidulin III (5,7,3’,6’-Tetrahydroxy-8,2’-

dimethoxyflavone)
C17H14O8 346 Root 0 1 0 0,3333333

34 Wogonin (5,7-Dihydroxy-8-
methoxyflavone)

C16H12O5 284 Root; Aerial 
part; Hairy 

root

0 1 0 0,3333333

35 Oroxylin A (5,7-Dihydroxy-6-
methoxyflavone)

C16H12O5 284 Root 0 1 0 0,3333333

36 Syringic acid (4-Hydroxy-3,5-
dimethoxybenzoic acid)

C9H10O5 198 Root 0 0 1 0,3333333

37 Vanillic acid (4-Hydroxy-3-
methoxybenzoic acid)

C8H8O4 168 Root 0 0 1 0,3333333

38 Genkwanin (5,4’-Dihydroxy-7-
methoxyflavone)

C16H12O5 284 Aerial part 0 1 0 0,3333333

39 5,8-Dihydroxy-7-methoxyflavone C16H12O5 284 Root 0 1 0 0,3333333
40 Viscidulin II (5,2’,6’-Trihydroxy-7,8-

dimethoxyflavone)
C17H14O7 330 Root 0 1 0 0,3333333

41 Rivularin (5,6’-Dihydroxy-7,8,2’-
trimethoxyflavone)

C18H16O7 344 Root; Hairy 
root

0 1 0 0,3333333

42 Skullcapflavone I (5,2’-Dihydroxy-7,8-
dimethoxyflavone)

C17H14O6 314 Root; Hairy 
root

0 1 0 0,3333333

43 5,6,7-Trihydroxy-4’-methoxyflavone C16H12O6 300 Root 0 0 1 0,3333333
44 5,7,6’-Trihydroxy-2’-methoxyflavonol C16H12O7 316 Root 0 1 0 0,3333333
45 5,7,6’-Trihydroxy-8,2’-dimethoxyflavone C17H14O7 330 Root 0 1 0 0,3333333
46 Baicalein 7-O-β-D-glucoside C21H20O10 432 Root; Aerial 

part
0 0 1 0,3333333

End of the Table 4
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was aligned to the format of the training data to 
ensure compatibility with the models. Specifically:

 y columns were ordered identically to the train-
ing dataset;

 y SMILES structures were validated for correct-
ness using «RDKit».

The saved models files — «random_forest_mo-
del.pkl», «xgb_model.pkl», and «lgb_model.pkl» — 
were loaded into the Google Colab environment 
using the «joblib» library [17]. Each of the 78 com-
pounds was individually evaluated by all three 
models. The Average_Prediction score was calcu-
lated as the mean of model predictions (Equation 6).

In Table 4, the compounds are listed in a simple 
numerical sequence, while their names, descrip-
tions, and the corresponding plant parts are re-
tained as reported in the source [4], ensuring 
traceability and consistency with the phytochemi-
cal data of S. baicalensis.

Based on the data presented in Table 4, 27 com-
pounds received a positive activity prediction from 
two models simultaneously (predominantly 
XGBoos t and LightGBM), indicating high predic-
tion consistency and increased confidence in their 
biological relevance. An additional 19 compounds 
were predicted as active by only one model, which 
may suggest marginal activity or descriptor values 
near classification thresholds. Only one compound 
was predicted as active by the Random Forest-
based model, which may be attributed to the mo-
del's lower sensitivity to weak activity signals or its 
reliance on a different subset of descriptors. This 
distribution of results confirms the sensitivity and 
realism of the models and highlights that the com-
bined use of two independent, yet high-perfor-
ming algorithms — XGBoost and LightGBM — 
which rely on different groups of descriptors, pro-
vides a more robust identification of potentially 
active compounds. Notably, 42 out of the 46 pre-
dicted active compounds were found specifically 
in the root of S. baicalensis — the plant part tradi-
tionally considered the most pharmacologically 
valuable due to its high concentration of bioactive 
flavonoids. Although from a chemical perspective 
some of the compounds that received a positive 

Average_Prediction are not typical flavonoids or 
their glycosides, their inclusion among the poten-
tially active candidates can be explained by several 
factors. Many simple phenolic compounds, such 
as vanillin or p-hydroxybenzoic acid, are interme-
diates in flavonoid biosynthesis, exhibit their own 
pharmacological activity (e.g., antioxidant, anti-
inflammatory), and share structural features with 
bioactive fragments present in the training data-
sets. The machine learning models likely identified 
similarities in their molecular descriptors to those 
of active compounds in the training set, which led 
to a positive prediction.

These findings demonstrate the potential of the 
proposed models as effective in silico tools for pre-
liminary screening of compounds with targeted 
pharmacological activity in the chemical profiles 
of underexplored yet promising medicinal plants. 
This approach offers the advantage of significantly 
reducing the scope of experimental validation by 
prioritizing compounds with the highest predicted 
likelihood of biological activity.

Conclusions
The application of the developed machine learning 
models to the analysis of 78 components of S. bai-
calensis enabled the identification of several com-
pounds with a high probability of exhibiting sig-
nificant biological activity. Given the multicompo-
nent nature of this plant's phytocomplexes, the po-
tential synergistic effects of individual consti tuents 
cannot be excluded, as they may enhance the bio-
logical impact even of compounds with moderate 
standalone activity. This property makes S.  bai-
calensis particularly promising for further investi-
gation in pharmacology and biomedicine, especial-
ly in the development of multicomponent phytop-
harmaceuticals. In this context, the use of network 
pharmacology approaches is advisable, as they al-
low the study of interactions between multiple 
plant-derived components, the prediction of syner-
gistic effects, and the construction of personalized 
combinations of active substances targeting speci-
fic neuropharmacological pathways [3].
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IN SILICO ПРОГНОЗУВАННЯ НЕЙРОПРОТЕКТОРНИХ 
ВЛАСТИВОСТЕЙ СПОЛУК ПРИРОДНОГО ПОХОДЖЕННЯ НА ПРИКЛАДІ 
ШОЛОМНИЦІ БАЙКАЛЬСЬКОЇ (SCUTELLARIA BAICALENSIS)

Мета. Розробка, оптимізація та апробація ефективних in silico моделей прогнозування нейропротекторних та 
анксіолітичних властивостей сполук природного походження на прикладі шоломниці байкальської (Scutellaria 
baicalensis). Методи. Побудова моделей машинного навчання. Результати. Розроблено три моделі машинного 
навчання, побудовані із застосуванням алгоритмів Random Forest, XGBoost та LightGBM, для прогнозування 
нейропротекторної та анксіолітичної активностей природних сполук. Побудовані класифікатори досягли точ-
ності на рівні 75—78%. Запропоновано підхід бінарної класифікації із залученням молекулярних дескрипторів 
і структурних фінгерпринтів, який після обробки та оптимізації дозволяє виявляти сполуки з потенційною 
нейропротекторною активністю. Обґрунтовано ефективність застосування методів in silico моделювання для 
прогнозування нейропротекторних та анксіолітичних властивостей сполук S. baicalensis. Застосування моделей 
до компонентів цього виду засвідчило їхню здатність верифікувати вже відомі біологічно активні речовини: 
з 78 досліджених сполук 46 були ідентифіковані як потенційно активні. Висновки. Застосування in silico про-
гнозування нейропротекторних властивостей біоактивних сполук є перспективним для скринінгу фітокомп-
лексів, зокрема у фармації та медицині — для профілактики та підтримки при ПТСР і нервових розладах.
Ключові слова. in silico, машинне навчання, молекулярні дескриптори, Scutellaria baicalensis, нейропротекторні 
властивості.
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