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Introduction

Abstract. The loop domain organization of chromatin plays an important role in transcription
regulation and is known to be dependent on the cell functional states. The aim of this work
was to investigate the possible DNA loop reorganization in dorsal ganglion neurons upon
inflammatory pain. Methods. We used single cell gel electrophoresis (the comet assay) to
analyze the kinetics of the DNA loop migration from the nucleoids obtained from lysed
neurons. Results. Independently of inflammation, the neurons are characterized by rela-
tively low amount of DNA in the comet tails due to a low content of DNA in the loops, which
may be resolved by the comet assay (up to ~400 kb). Upon inflammation the contour length
of the loops essentially decreases, in parallel with a respective increase of DNA in relatively
short (up to ~100 kb) loops. Conclusions. The reorganization of the DNA loops upon inflam-
mation could be suggested to be accompanied by rather significant changes in the transcrip-
tion regulation.
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Loop domains are known to be the key ele-
ments of both higher order chromatin structure
and transcription regulation [1-5]. The loops,
which appear in an active ATP-dependent pro-
cess [6—8], are dynamic structures [9-11] and
thus the loop organization is expected to vary
under changes in the cell functional states.

Despite the comprehensive understanding of
general principles of chromatin loop formation
the reorganization of the loops upon func-
tional transitions remains far from being com-
pletely understood.

In particular, to our knowledge, the chro-
matin loop domain organization in the nuclei
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of neurons has never been analyzed. In this
communication we focused on dorsal root
ganglion (DRG) neurons that are involved in
pain reception. Under peripheral inflamma-
tion, DRG neurons are stimulated by inflam-
matory mediators, which sensitize neurons for
pain perception by altering the expression of
many genes [12—16]. Since changes in the
expression of some genes during inflammation
are associated with chromatin reorganization
[17], it was interesting to assess the extent of
such reorganization in DRG neurons caused
by inflammation.

In our previous works we have developed
a simple approach to test the loop domain
organization (reviewed in [18]). The approach
is based on an analysis of the electrophoretic
track (the comet tail) formation in single cell
gel electrophoresis (the comet assay). Measu-
ring the kinetics of DNA exit during the comet
assay we have shown that DNA loops in the
nucleoids (cells lysed in the presence of deter-
gents and high salt) correspond to chromatin
loops in living cells [19-21]. We have shown
also that the kinetic behavior of the two pa-
rameters, the relative amount of DNA in the
comet tail and the tail length, depend on the
cell type and/or the cell functional state [20,
22, 23].

Here we investigate the loop domain orga-
nization in the DRG neurons obtained from
the rats with and without peripheral inflam-
mation. Our results show that, first, the loop
domain organization is different in some as-
pects from that of the other cells previously
investigated (lymphocytes, glioblastoma cells
etc.), and, second, the loops in the DRG neu-
rons are reorganized under peripheral inflam-
mation.

Materials and Methods

Peripheral inflammation was induced by sub-
cutaneous injection of about 100-150 pl of
complete Freund’s adjuvant (CFA, Mycobac-
terium tuberculosis), suspended in an oil-saline
(1:1) emulsion, into plantar side of one of two
hind paw of the Wistar rats weighing
200 + 20 g. The oil-saline (1:1) emulsion injec-
tion without CFA was done for the control in
another paw. DRG neurons were isolated on
the second day after injection.

Isolation of DRG neurons was done essen-
tially as described previously [24]. Lumbar
L4-L6 DRG neurons were collected in the
1.5 ml Eppendorf tubes with 1 ml of Tyrode’s
solution containing 0.3 % type 4 collagenase
250 U/mg (Worthington, USA) and 0.3 %
trypsin, 204 U/mg (Worthington, USA), treated
for 20 min at 36 °C, washed from enzymes in
fresh Tyrode’s solution and mechanically dis-
sociated by triturating them through a series
of Pasteur pipettes polished to several narro-
wing diameters. Isolated cells were collected
by centrifugation, resuspended in fresh
Tyrode’s solution and kept in refrigerator at
4 °C until use. Undissociated ganglia were
collected in a tube with a fresh reaction mix-
ture and procedure of the neurons isolation was
repeated until complete dissociation of ganglia.

The comet assay was performed as de-
scribed earlier [19, 20, 25]. Briefly, neurons
were embedded in the 0.67 % agarose gel on
the surface of a microscope slide. Slides were
treated with ice-cold lysis solution (2.5 M
NaCl, 100 mM EDTA, 10 mM Tris-HCI
(pH 8.0), 1 % Triton X-100) for several hours,
washed twice by TBE buffer (89 mMTris-
borat, 2 MM EDTA, pH 7.5) and electropho-
resed in the same buffer. Several slides, which
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were simultaneously prepared in the same way,
were placed into the electrophoresis tank, and
then they were taken out every 10 minutes of
electrophoresis. After electrophoresis the slides
were stained with DAPI and immediately an-
alyzed with a fluorescent microscope. A total
100-150 randomly chosen nucleoids on each
slide were examined using image analysis
software CometScore (TriTec, USA) to deter-
mine the relative amount of DNA in the tails
and the tail length. Taking the contour length
of the loop to be roughly two times longer than
the extended loop, the tail length was multi-
plied by two and divided by 0.34 nm (the
distance between the adjacent base pairs) to
convert it in the contour length (in base pairs)
of the longest loops. The kinetic plots of the
relative amount /' of DNA in the tails versus
electrophoresis time ¢ were fitted according to
the standard equation of monomolecular kine-
tics [19]:

F=F,(1 - exp(-k1)), (1)
where F,, is the maximum relative amount of
DNA that can exit, & is the rate constant.

Results and Discussion

Fig. 1A,B shows the kinetics of the comet tail
formation during the comet assay that was
done with DRG neurons obtained from control
rats and rats with peripheral inflammation. As
compared with other cell types investigated
earlier, the plots are different in some respects.
Our previous analysis allowed us to divide all
the nucleoid loops into three subsets: loops on
the nucleoid surface, which migrate very ra-
pidly; inner loops inside the nucleoid, the mi-
gration of which is retarded; and very large
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Fig. 1. The average relative amount /' of DNA in the

comet tails (A) and the average contour length of the lon-

gest loops L,, in the tails (B) as functions of electropho-

resis time for nucleoids obtained from DRG neurons of

control rats (0) and rats with inflammation (o).

loops (longer than ~400 kb) that cannot mi-
grate at all [19, 26]. After a long-time electro-
phoresis the relative amount of DNA in the
tails reached ~20 % (first two subsets together)
for human lymphocytes [19]. For less diffe-
rentiated cancer cells of different types the
saturation level of DNA in the tails was much
lower [20, 22, 23], i.e., there was a large
amount of DNA in the very long loops. At the
same time, the kinetic plots of DNA exit usu-
ally had a two-step shape (the two steps were
attributed to first two subsets of the loops
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mentioned above) [19, 20, 22, 23]. Low satu- (Fig. 1A) resemble those of the cancer cells.
ration levels in the relative DNA amount plots But, in contrast to many other cells studied
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Fig. 2. Distributions of the contour length of the longest loops L, in the tails fitted by Gaussians (smooth curves) after
30 min (A, C) and 60 min (B, D) electrophoresis for nucleoids obtained from DRG neurons of control rats (A, B) and
rats with inflammation (C, D).
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before, the second step was absent: the plots
can be fitted with the standard equation (Eq. 1)
of monomolecular kinetics (Fig. 1A). It can be
concluded that the tail of the neuronal nucle-
oids is formed exclusively by the surface loops
whereas the inner loops are too large to be
resolved by the comet assay. Moreover, this
feature does not change under inflammation:
the two plots in Fig. 1A are almost the same.

In contrast to the kinetic behavior of the
DNA relative amount in the tails, the tail length
was found to be sensitive to inflammation.
Induction of inflammatory pain resulted in an
essential decrease in the contour length of the
longest loops (Fig. 1B): during inflammatory
process the loops larger than ~100 kb, which
were present in control nucleoids, disappeared.
Since the relative amount of DNA in the tails
does not change under inflammation, it should
mean that the number of short loops essen-
tially increases.

We have analyzed also the longest loop
length distributions at different moments du-
ring electrophoresis (Fig. 2). After a relatively
short electrophoresis (up to 30 min) the distri-
butions can be fitted by single Gaussians
(Fig. 2A,C). This was not the case, however,
after more prolonged electrophoresis when the
distributions became biphasic (Fig 2B, D).
This observation shows that longer loops
(probably located inside the nucleoids) can exit
during long-time electrophoresis but their con-
tribution into the average values presented in
Fig. 1B is not so large. Altogether, our results
clearly show that rearrangements of the DNA
loops occur in DRG neurons under the induc-
tion of inflammatory pain. Such rearrange-
ments are probably accompanied by essential
changes in the transcription regulation system.
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Conclusions

The results of our analysis of the kinetics of
electrophoretic track formation for the nucleoids
derived from DRG neurons can be summarized
as follows. (1) A relatively low amount of DNA
in the tails after a long-time comet assay seems
to be a signature of the neuron-derived nucle-
oids. The main reason of this is a low content
of DNA in the loops, the sizes of which are
within the resolution of the comet assay (up to
~400 kb). (2) The inflammation does not change
this low amount of DNA but induces a redistri-
bution of the loops: the contour length of the
loops resolved by the comet assay essentially
decreases, obviously in parallel with an increase
of DNA in such relatively short loops (up to
~100 kb). The results of this work suggest that
the DNA loop reorganization under inflamma-
tion should be accompanied by rather significant
changes in the transcription regulation.
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Opranizanis nerexbHux gomenis JHK
B HelipoHaX AOpPCaJbHUX KOPiHIEBUX TaHIIIiB:
edexTH nepudepuIHOro 3anajaeHHs

K. C. Adanaceena, J1. E. droxwuii, I1. B. binan,
H. B. Boiitenko, A. B. Cusoio6

Pestome. Opranizarist meTeIbHIX JOMEHIB XpPOMATHHY, 10
Bijlirpae BaXKJIMBY POJIb Y PEryJsiii TpaHCKPHIILIi, 3are-
JKUTH Bifl (PYHKIIOHATBHOTO CTaHy KIiTHHU. MeTa pobo-
TH TIOJsIrajla y AOCIIHKEHHI MOYIIMBOI peopraHizamii
nerens /IHK y HelipoHax mopcajibHUX KOpIHLIEBHX T'aH-
DIi{B TIpH 1HIYKIi 3anameHOrO Ooiro. MeTtomn. Mu Bu-
KOPHCTOBYBAJIH €JIEKTPOoQope3 i30IbOBaHUX KIITHH (KO-
METHUH enekTpodopes) Ui aHamizy KiHETUKH Mirparii
merens JIHK i3 HyKkIeoizniB, OTpUMaHUX 3 JII30BaHUX HE-
iiponis. Pe3yabraTn. Hesamexxno Bif 3anaieHHs, HEHPO-
HH XapaKTepU3yIOThCsI BITHOCHO HU3bKKM piBHeM JIHK y
XBOCTaX KOMET BHACITITOK Hu3bKoro BMicTy JJHK y memsix,
II10 3HAXOATHCA Y MEXaX PO3IUTHHOI 3MaTHOCTI KOMETHO-
ro enexrpodopesy (1o ~400 k0). 3a yMOB 3amajcHHs
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KOHTYpHa JOBXMHA IIETEeNIb CyTTEBO 3HMKYETHCS, Iapa-
JIETTBHO 13 BiAmoBigauM 3poctanasam dactku JJHK y ckra-
Il BITHOCHO KOpOTKHX (10 ~100 k0) nerens. BucHoBKH.
MoskHa IPUITYCTHTH, 10 peopraHizaris nerens JHK mpu
3amaJieHHI TOBUHHA CYIIPOBOIKYBATHCH 3 BEIIbMH CYTTe€-
BUMH 3MIHaMH y PETYJIsiLil TPaHCKPHITLII.

KawuyoBi caosa: newn JAHK, neiiponu, komeTHuMit
enekrpodopes, 1opcaibHi KOPIHIIEeBI I'aHIIIii, OLTb.

Opranusanusa nerejbHbIX 7oMeHoB JTHK
B HelipOHaX AOPCAJbHBIX KOPEIIKOBbIX FAHIINEB:
3¢ pexThl NeprudepuyecKoro BocnajieHns

K. C. Adanaceesa, /1. E. Troxwuit, [1. B. benan,
H. B. Boiitenko, A. B. CuBoio06

Pestome. Opranuzanys neTesbHbIX JOMEHOB XpOMAaTHHa,
WTparoIias BAXHYIO POJIb B PETYJIIUNA TPAHCKPHIILINH,
3aBUCHT OT (DYHKIIMOHAILHOTO COCTOsIHUA KieTkH. Llenn
paloTHI 3aKITI0YANIACH B MCCIIEI0BAHUN BO3MOXXHOH peop-
raauzauuu retens [JHK B HelipoHax AopcaibHBIX KOpeL-
KOBBIX T@HIVIMEB ITPU MHIYKIMU BOCIIAIMTEIBLHON OOIH.
MeToabl. MBI HCTIONIB30BAIIH IEKTPOQOpe3 H30JIMPOBaH-
HBIX KJIETOK (KOMETHBIH 37eKTpodope3) Ml aHaiIn3a
KkuHeTuky murpanuu nerens JJHK u3 nykieonnos, nomy-
YEeHHBIX U3 JIM3UPOBAHHBIX HEHPOHOB. Pe3y/bTarhl.
HesaBucuMo 0T BocnianeHus1, HEHPOHBI XapaKTEPU3YOTCS
oTHocuTenbHO HU3kUM ypoBHeM JIHK B xBocTax komer
u3-3a Hu3Koro copepxanust JJHK B nmemisix, kotopele Ha-
XOISITCA B MpeAeIax pa3pemaromeii ciocoOHOCTH KOMET-
Horo aekTpodopesa (10 ~400 k0). B ycnoBusix Bocmaie-
HUSL KOHTYpHasl JJIMHA [IETEJb CYILIECTBEHHO YMEHbIIACT-
Cs1, TapaJUIeNIbHO C COOTBETCTBYIOIINM BO3pACTaHUEM JOJIH
JIHK B coctaBe oTHOCHUTENIBHO KOPOTKHX (10 ~100 k0)
nerenb. BeiBoabl. MOXHO MPeNnookuTh, YTO peopra-
Hm3anua nerens JJHK mpu Bocmamenun momkHa OBITH
aCCOIMMPOBAHA C I0OBOJIHO CYIIECTBEHHBIMU N3MEHEHH-
SIMU B PETYIISLIUN TPAHCKPUITLIUH.

KawueBsbie caoBa: e [JHK, HelipoHsl, komeT-
HBII 371eKTpodopes, JopcaibHbIC KOPEIIKOBBIE TAHIINH,
00JIb.
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