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Aim. To identify novel putative drug targets of methicillin-resistant S. aureus (MRSA)
through subtractive proteome analysis. Methods. Identification of non-homologous proteins
in the human proteome, search of MRSA essential genes and evaluation of drug target
novelty were performed using a protein BLAST server. Unique metabolic pathways identi-
fication was carried out using data and tools from KEGG (Kyoto Encyclopedia of Genes
and Genomes). Prediction of sub-cellular proteins localization was performed using com-
bination of PSORT v. 3.0.2, CELLO v. 2.5, iLoc-Gpos, and Pred-Lipo tools. Homology
modeling was performed using SWISS-MODEL, Phyre2, I-TASSER web-servers and the
MODELLER software. Results. Proteomes of six annotated methicillin-resistant strains :
MRSA ATCC BAA-1680, H-EMRSA-15, LA MRSA ST398, MRSA 252, MRSA ST772,
UTSW MRSA 55 were initially analyzed. The proteome analysis of the MRSA strains in
several consequent steps allowed to identify two molecular targets: diadenylate cyclase and
D-alanyl-lipoteichoic acid biosynthesis (DItB) protein which meet the requirements of being
essential, membrane-bound, non-homologous to human proteome, involved in unique
metabolic pathways and new in terms of not having approved drugs. Using the homology
modeling approach, we have built three-dimensional structures of these proteins and pre-
dicted their ligand-binding sites. Conclusions. We used classical bioinformatics approaches
to identify two molecular targets of MRSA :diadenylate cyclase and DItB which can be used
for further rational drug design in order to find novel therapeutic agents for treatment of
multidrug resistant staphylococcal infection.
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Introduction

Staphylococcus aureus 1s the leading cause of
hospital-acquired infections, which range from
mild skin and soft tissue infections to more
severe diseases, such as endocarditis, bactere-
mia, sepsis, and osteomyelitis [1]. S. aureus
belongs to ESKAPE pathogens that are diffi-
cult to treat due to increasing multidrug resis-
tance. Penicillin was effective against staphy-
lococcal infections until strains evolved the
mechanism to hydrolyse the B-lactam ring of
antibiotic. Staphylococcal resistance to penicil-
lin is mediated by penicillinase. Today, in
clinical practice methicillin — chemically mod-
ified penicillin which cannot be hydrolysed by
penicillinase — is widely used for treatment of
staphylococcal infections. At present, methi-
cillin-resistant S. aureus (MRSA) is one of the
most feared strains of S. aureus which have
become resistant to most of B-lactam antibiot-
ics. For this reason, vancomycin is commonly
used to combat MRSA. Recently, the vanco-
mycin-resistant S. aureus strains have also
emerged. Noteworthy, none drug to date has
shown superiority to vancomycin in the treat-
ment of MRSA infections with the possible
exception of linezolid in hospital-acquired
pneumonia [2]. Therefore, the development of
novel antibiotics for the treatment of staphy-
lococcal infections is of great interest. The
ability of bacteria to rapidly acquire drug re-
sistance requires the selection of novel proper
molecular targets. Today, a number of proteins
are considered as promising drug targets for
the development of antibiotics to treat staphy-
lococcal infections. After extensive review of
the literature for the last three years, the fol-
lowing proteins were considered as potential

therapeutic drug targets for the development
of antistaphylococcal agents: bacterial enoyl
reductase (Fabl) [3,4], transglycosylase
(TGase) [5,6], sortase A [7-13], diapophytoene
desaturase (CrtN) [14-17], type Il topoisom-
erase [18-21], topoisomerase 1V [22-27], fila-
mentous temperature-sensitive protein Z (FtsZ)
[28-30], UDP-N-acetylenolpyruvylglucosamine
reductase (MurB) [31], lipoteichoic acid syn-
thase (LtaS) [32], biotin protein ligase [33,34],
peptide deformylase [35], Ser/Thr protein ki-
nase STK1 [36], pentaerythritol tetranintrate
reductase [37], peptide deformylase (PDF) [38,
39], NorA efflux pump [40-46], poly-beta-1,6-
N-acetyl-D-glucosamine synthase (IcaA) [47],
dihydrofolate reductase (DHFR) [48], phenyl-
alanine tRNA synthetase (PheRS) [49],4-dihy-
droxy-2-naphthoate prenyltransferase (MenA)
[50], SecA ATPase [51], biotin protein ligase
(BPL) [52], UDP-MurNAc-pentapeptide
(MurF), uridine monophospate kinase (UMPK)
[53], N-Acetylneuraminate lyase [54],
6-Hydroxymethyl-7,8-dihydropterin pyrophos-
phokinase (HPPK) [55, 56], caseinolytic pro-
tease ClpP [57], multidrug efflux pump LmrS
[58], collagen (Cn)-binding protein Can [59],
pantothenate kinase [60], undecaprenyl diphos-
phate synthase [61, 62] and undecaprenyl di-
phosphate phosphatase [61, 63], MurE [64],
bacterial pathway for fatty acid biosynthesis,
FASII [65], pyruvate kinase [66, 67], nitric
oxide synthase [68], eukaryotic-like Ser/Thr
phosphatase Stpl [69], tyrosyl-tRNA synthe-
tase (TyrRSs) [70], heptaprenyl diphosphate
synthase (HepPPS) [71], B-Ketoacyl-ACP syn-
thases (KAS) [72], RNA polymerase [73],
UDP-GIcNAc 2-epimerase (MnaA) [74],
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Fig. 1. The workflow of the analysis

ATPase [75], mevalonate diphosphate decar-
boxylase (MDD) [76], glycosyltransfe-
rase [77].

In spite of large amount of proposed mo-
lecular targets, there are currently only nine
investigational antibiotics against S. aureus,
including MRSA, undergoing clinical trials but
targeting only four proteins, such as DNA
gyrase, topoisomerase IV, enoyl-acyl-carrier
(ACP) reductase (Fabl) and P site at the 50S
ribosome subunit of bacteria [78].

Due to fast growth of resistant strains, the
identification of unique drug targets amongst
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the resistant pathogens is very important.
A number of methods are currently available
to identify potential drug targets. Among them,
bioinformatics approaches are the most fast
and cost-effective. For example, subtractive
genome analysis has been already used to
identify putative molecular targets for different
pathogenic strains of Staphylococcus aureus,
such as Staphylococcus aureus subsp. aureus
MW?2 (CA-MRSA) [79], Staphylococcus au-
reus N315 [80], Staphylococcus aureus ST398,
S. aureus 252 [81, 82], vancomycin-resistant
Staphylococcus aureus [83]. The aim of this
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study is the identification of novel membrane-
bound putative molecular targets common for
all already sequenced methicillin-resistant
strains of Staphylococcus aureus.

Methods

The procedure of potential drug targets iden-
tification in our work included formation of
the initial set, protein sequence analysis, and
structural analysis. The workflow is presented
in Figure 1.

1. Proteome retrieval of MRSA strains

Complete proteomes of six methicillin-resis-
tant strains of S. aureus were downloaded in
FASTA format from the NCBI Protein data-
base that contains sequences from GenBank,
TPA, RefSeq, PRF, PIR, SwissProt, and PDB
on April 10, 2018. Besides the sequences
themselves, NCBI also provided general in-
formation about the targeted strains genome
annotation data.

2. Comparison of the proteomes

In order to form the initial set of proteins for
the analysis, [the] NCBI accession numbers
(ACs) of the proteins from different strains
were compared manually. Only the proteins
with common ACs were included into the
initial set, the others were not considered,
because they were suggested to have some
differences between the strains which might
have an impact on the potential drug effective-
ness.

3. Identification of non- homologous
proteins to the human proteome

The representative set was subjected to Protein
BLAST against human proteome with the

expectation-value cutoff of 10-3. BLOSUMG62
was chosen as the scoring matrix for the
BLASTP algorithm, the non-redundant protein
sequences were taken as the search set data-
base. As a result, we have obtained homolo-
gous sequences, with significant similarity to
human proteome, and non-homologous se-
quences, for which no hits with significant
similarity were found. The proteins with ho-
mology to the human proteome were excluded
from the set, thus were not taken into account
during further analysis.

4. MRSA essential genes identification

The set of non-homologous proteins was fur-
ther subjected for alignment against the
Database of Essential Genes (DEG) [84, 85].
The current version of this database contains
essential genes of two S. aureus strains —
NCTC 8325 and N315. The sequences were
filtered using following settings: BLASTP as
the algorithm, BLOSUMS62 as the substitution
matrix, expectation value cutoff equals to 10-,
minimal score equals to 100. The proteins
which met the E-value cutoff and minimal
score were considered to be essential for
pathogen survival and propagation.

5. Unigue metabolic pathways identifica-
tion

Using the data and tools from KEGG (Kyoto
Encyclopedia of Genes and Genomes), the
metabolic pathway analysis was carried out to
determine unique metabolic pathways of the
pathogen. KEGG is an integrated database that
contains systems, genomic, chemical and
health information allowing biological inter-
pretation of genome sequences and other
throughput data [86, 87]. All the essential non-
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homologous proteins were analyzed by KEGG
Automatic Annotation Server (KAAS). It pro-
vides functional annotation of genes or pro-
teins by BLAST or GHOST comparisons
against manually curated KEGG databases
[88]. In this study we used BLASTP as the
algorithm for such comparison. As a result we
obtained a KO assignment list, on the basis of
which the manual selection of proteins in-
volved in unique metabolic pathways was per-
formed.

6. Evaluation of drug target novelty

To separate already-known drug targets from
novel ones, protein BLAST against DrugBank
database was performed. The latest version of
DrugBank (5.1.0) contains 11 143 drug entries,
including 2 555 approved small molecule
drugs, 965 approved biotech drugs, 121 nutra-
ceuticals, and over 5 145 experimental drugs.
5121 non-redundant protein sequences are
linked to these entries [89]. This allowed us to
exclude the proteins that have proper ligands
from further analysis.

7. Prediction of sub-cellular localization
of proteins

The important question to be addressed when
choosing a target for further drug development
is the localization of that particular target in-
side a cell. Compartment localization deter-
mines the methods for protein extraction and
purification, which makes upcoming investi-
gational steps easier or harder. In order to
predict the sub-cellular localization of drug-
gable non-homologous essential proteins a
combination of tools such as PSORT v. 3.0.2
[90], CELLO v. 2.5 [91], iLoc-Gpos [92], and
Pred-Lipo [93] was used. The localization was

452

assigned to a protein only in the case when all
four tools obtained the same results.

8. Homology modeling of proteins

Three dimensional models for the resulting
protein set were generated on the basis of ho-
mology modeling by web-servers SWISS-
MODEL (https://swissmodel.expasy.org/inter-
active) [94-99], Phyre2 (http://www.sbg.bio.
ic.ac.uk/phyre2/html/page.cgi?id=index) [ 100,
101] and I-TASSER (https://zhanglab.ccmb.
med.umich.edu/I-TASSER/) [102-105] with
default parameters and Modeller 9.17 using
basic modeling mode (https://salilab.org/mod-
eller/tutorial/basic.html) [106-109]. The models
were minimized with GROMACS software
[110-112] using steepest descent algorithm
(1000 steps of minimization). The accuracy of
this modeling was validated using MolProbity
web-server [113]. The structures for template
proteins were retrieved from the Protein Data
Bank. In cases, when the performing of homol-
ogy modeling was impossible, the 3D-structure
was built ab initio using I-TASSER web-server.
The modeled structures for the target proteins
were analyzed with ProBiS Tools [114] in order
to predict the binding sites of the proteins.

Results and Discussion

The objective of this study was to identify the
novel putative drug targets of methicillin-re-
sistant S. aureus (MRSA) through subtractive
genomic analysis. The combination of subtrac-
tive genomic analysis and comparative genom-
ics/proteomics is a powerful method for iden-
tification of unique sequences with certain
metabolic functions.

Noteworthy, not all methicillin-resistant
strains of S. aureus have either their genomes
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sequenced completely or proteomes annotated.
Therefore, in this study we have compared
annotated proteomes of already sequenced
methicillin-resistant strains, namely MRSA
ATCC BAA-1680 [115], H-EMRSA-15 [116],
LA MRSA ST398 [117], MRSA 252 [118],
ST772 MRSA [119], and UTSW MRSA 55
[120], in order to identify common sequences.

The total number of proteins for each strain,
which have been retrieved from NCBI Protein
database, is indicated in Table 1.

Following the procedure indicated in Fig. 1,
we analyzed the proteome of MRSA in sev-
eral steps; the results are given in Table 2.

The comparative analysis of protein acces-
sion numbers showed that only 326 sequences

Table 1. Total number of proteins corresponding to
strains during analysis

Strain anl;(:'leaft(:‘glfce Total nun}ber
available) of proteins
MRSA ATCC BAA-1680 25b 2874
26b 2872
27b 2873
29b 2873
31b 2873
H-EMRSA-15 - 2775
LA MRSA ST398 - 2767
MRSA 252 - 2819
MRSA ST772 - 2806
UTSW MRSA 55 - 2976

Table 2. Subtractive analysis results for MRSA

Analytical step of the analysis thfa;;l:;?::r
Representative set of MRSA proteins 326
Non-homologous proteins 172
Essential proteins 45
Proteins after KEGG analysis 28
Potentially novel drug targets 22
Membrane-bound proteins 2

are common for the abovementioned MRSA
strains, the corresponding accession numbers
and definitions are given in Supplementary
table 1. The resulting set does not exhaust the
pool of common proteins due to possible in-
consistencies between the accession numbers
originated from different sources but can still
be considered adequate for the search of com-
mon molecular targets.

The existence of homologous proteins be-
tween bacteria and human is believed to have
emerged in course of evolution [121-123]. A
number of studies assume a “similarity hypoth-
esis” that states homology as an evolutionary
adaptation of pathogens to prevent being rec-
ognized by host’s immune system [124, 125].
The selection of particular homologous pairs
as potential drug targets against MRSA might
lead to cross-reactivity in human hosts. That
is the reason why in the next step the sequenc-
es from the representative set were subjected
to Protein BLAST against the whole human
genome with a threshold E-value of 103, The
proteins with significant similarity were ex-
cluded from further analysis to prevent cross-
reactions between human and pathogen during
pharmaceutical treatment. This step reduced
the number of sequences in the representative
set to 172.

We determined the essentiality of the non-
homologous proteins of methicillin-resistant
S. aureus based on bioinformatics prediction
through homology search in DEG against
known essential genes identified by an anti-
sense RNA technique of two S. aureus strains,
NCTC 8325 and N315. This approach has a
crucial useful feature. Essential genes of an
organism constitute the minimal set of genes
required for a living cell in given growth con-
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Fig. 2. Orthology groups of analyzed proteins

ditions. Thus, the proteins, coded by corre-
sponding essential genes, have higher drug-
gability potential. Protein BLAST against DEG
revealed that 45 sequences from our set had
homologs with sequences from DEG.
Noteworthy, a certain distribution of the
amount of homologs between our set and DEG
was observed, e.g., one sequence had 4 homo-
logs in DEG, 11 sequences had 2 homologs
each, and the rest of the set had just one cor-
responding homolog. Supplementary table 2
contains the results obtained during performing
this step.

KAAS was used to determine whether the
resulted outcome from the DEG step was in-
volved in essential metabolic pathways. More
importantly, the analysis with KAAS enabled
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us to exclude non-homologous essential pro-
teins potentially having the enzymatic activity
for reactions of human metabolism or a simi-
lar function regarding genetic information pro-
cessing or signaling and cellular processes.
The comparison was carried out between S.
aureus and human metabolic networks and
revealed that 28 sequences out of 45 had a
significant similarity to S. aureus enzymes and
at the same time had none to human. After the
manual revision of KO numbers all sequences
were classified according to their orthology
groups, the distribution of the analyzed pro-
teins throughout KEGG metabolic networks is
represented in Figure 2.

Since the objective of our study was to
identify the novel putative drug targets we
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have evaluated the druggability of the pre-
dicted in previous steps protein set by Protein
BLAST analysis against DrugBank database
(DBD) v. 5.1.0. DrugBank is a freely available
web resource containing detailed drug, drug-
target, drug action and drug interaction infor-
mation about FDA-approved drugs and ex-
perimental drugs going through the FDA ap-
proval process. The results, as shown in
Table 3, indicate that 6 proteins out of the
analyzed set interact with certain drugs.

Further, the sub-cellular localization of each
protein has been predicted using PSORT v.
3.0.2, CELLO v. 2.5, iLoc-Gpos, and Pred-
Lipo. The results are presented in
Supplementary table 3. Together, the obtained
results provide us with a set of novel putative
drug targets of MRSA, including two mem-
brane-bound proteins, namely TIGR00159
family protein (diadenylate cyclase) and
WP _000613541.1 (D-alanyl-lipoteichoic acid
biosynthesis protein DItB).

Diadenylate cyclase is an essential bacte-
rial enzyme which utilizes two molecules of
adenosine triphosphate (ATP) for the synthesis
of the important second messenger — cyclic
diadenylate monophosphate (c-di-AMP) which
has been shown to regulate such processes as
virulence, cell wall formation, cell size, ion
transport, efc. Therefore, diadenylate cyclase

is a potential target for the development of
novel antibiotics. But only a small amount of
low-molecular inhibitors for bacterial diade-
nylate cyclase has been reported in scientific
literature so far. Recently, it was shown that
several polyphenols inhibit Bacillus subtilis
diadenylate cyclase [126]. Also, it was found
that suramin, known antiparasitic drug is a
potent inhibitor of diadenylate cyclase [127].
For the best of our knowledge, none small
molecular inhibitor for S. aureus diadenylate
cyclase has been reported.

DItB is a multi-membrane-spanning protein
required for D-alanylation of teichoic acids
which is important for the cell wall synthesis.
Recently, Pasquina et al. [128] using the syn-
thetic lethal approach have identified one com-
pound that inhibits DItB S. aureus. It has been
found that this inhibitor sensitizes S. aureus to
several antibiotics and is lethal in combination
with a wall teichoic acid inhibitor. Therefore,
DItB can be considered as an important anti-
biotic target as well.

We have generated 3D models for diadenyl-
ate cyclase and D-alanyl-lipoteichoic acid bio-
synthesis protein DItB of S. aureus, which can
be used for

further structure-based drug design. In order
to identify template proteins for homology
modeling of diadenylate cyclase and DItB

Table 3. The proteins which interact with the drugs accordingly to DrugBank data

NCBI Accession Number

The drug

Drug group

WP _000290472.1 Troleandomycin

Approved

WP 001123276.1 2-0Oxo0-3-Pentenoic Acid

Experimental

WP _001274017.1

2-methylthio-N6-isopentenyl-adenosine-5’-monophosphate

Experimental

WP_001549197.1 N-Formylmethionine

Experimental

WP 000692521.1 Flavin mononucleotide

Approved, investigational

WP 000562498.1 Cladribine, Gallium nitrate

Approved, investigational
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protein we have performed alignment of these
sequences against Protein Data Bank (PDB)
proteins using BLAST. It has been revealed
that the most homologous protein for diadenyl-
ate cyclase S. aureus is diadenylate cyclase
Listeria monocytogenes (PDB accession code:
4RV7) [129]. We have built four homology
models of diadenylate cyclase of S. aureus
based on crystal structure of diadenylate cy-
clase L. monocytogenes using web-servers
Swiss-Model, Phyre2, I-TASSER and Modeller
software tool. These homology models have
been validated with MolProbity web-server.
The MolProbity score combines the clash-
score, rotamer and Ramachandran evaluations.
The value of MolProbity score for [the] Swiss-
Model homology model is 1.66, for Phyre2
homology model — 2.42, for I-TASSER homol-
ogy model — 3.85, for Modeller homology
model — 3.49. Therefore, according to the ob-
tained results, the homology model which was
generated by Swiss-Model server, possesses

A

the best value of MolProbity score and has
been taken for further analysis. This homology
model was minimized with GROMACS soft-
ware using steepest descent algorithm
(1000 steps). After minimization the
MolProbity score was slightly improved (score
value is 1.38).

The superposition of homology model of
diadenylate cyclase of S. aureus (red colour)
with crystal structure of diadenylate cyclase
L. monocytogenes (blue colour) is represented
in Figure 3a. RMSD value of diadenylate cy-
clase of S. aureus with template structure is
0.754493. An ATP molecule was chosen as a
ligand for modeling. The resulted superim-
posed structures were further analyzed to lo-
cate the binding site residues of modeled di-
adenylate cyclase beyond the 7 A radius of the
ligand (Figure 3b). The superposition of active
sites of homology model (carbon atoms are
labeled by green colour) and template structure
(carbon atoms are labeled by white colour)

Fig. 3. The superposition of homology model of diadenylate cyclase S. aureus (red colour) with crystal structure of
diadenylate cyclase L. monocytogenes (blue colour) (A) and superposition of active sites of homology model (carbon
atoms are labeled by green colour) and template structure (carbon atoms are labeled by white colour) (B). The ligand

is an ATP molecule.
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demonstrates that the structures of investi-
gated enzymes are very similar. RMSD value
of amino acid residues in the active sites of
these enzymes is 0.885616.

Using BLAST we have not identified any
homologous protein for DItB, therefore the 3D
model should to be generated only ab initio.
We have built the model of DItB protein S.
aureus using I-TASSER web-server.
Confidence score (C-score) for the best model
is -1.29. C-score is a confidence score for es-
timating the quality of predicted models by
I-TASSER. It is calculated based on the sig-
nificance of threading template alignments and

Fig. 4. The homology model of D-alanyl-lipoteichoic
acid biosynthesis protein DItB S. aureus, obtained with
I-TASSER server. The ligands (green heme and yellow
CYMAL-4) indicate binding sites for small-molecular
compounds.

the convergence parameters of the structure
assembly simulations. C-score varies typically
from -5 to 2. The MolProbity score for this
homology model is 3.63.

We tried to optimize I-TASSER homology
model with GROMACS using different force
fields but there were some problems with atom
types. Therefore, we have built the homology
model of DItB protein S. aureus by Swiss-
Model server using as a template 3D model
generated with [-TASSER server. This homol-
ogy model was minimized with GROMACS
using steepest descent algorithm (1000 steps).
After minimization, the MolProbity score was
significantly improved in comparison with the
input model. MolProbity score of optimized
model is 2.07.

Also, we used ProBis tool to identify the
binding sites of modeled DItB protein. Two
potential binding sites, which can bind small
molecules, have been predicted (see Figure 4).
The binding pocket 1 (around green colored
heme) is formed by amino acid residues
Arg374, Asn377, Asn285, Lys284, Tyr33,
Asn34, Val37, Gly35, Thr38, 11e208, Phe46,
Ala204, Met41, Lys203, Glul99, Argl98.
Pocket 2 (around yellow labeled CYMAL-4)
is formed by amino acid residues Met97,
Ala382, Phe379, Gly378, Asn377, GIn376,
Trp375, Lys108, Arg374.

Conclusion

In this study we used classical bioinformatics
approaches to estimate whether there are po-
tential drug targets among methicillin-resistant
Staphylococcus aureus proteins. Using sub-
tractive genomic analysis we have identified
two molecular targets of MRSA — diadenylate
cyclase and D-alanyl-lipoteichoic acid biosyn-
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thesis protein which can be used for further
rational drug design in order to identify novel
therapeutic agents for the treatment of multi-
drug resistant staphylococcal infection.
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IMomyk HOBHX MOJIEKY/ISIPHUX MillleHel,
aconiiioBaHux 3 MeMOPaHOI0, 1JI1 PO3POOKH
AHTHOIOTHKIB NMPOTH MEeTHINJIIH-PE3MCTEHTHOTO
wramy Staphylococcus aureus in silico

A. 10. lepnariii, I. I1. Bonunens, M. B.
[Iporonomnos, B. M. Canenxin, JI. B. [ImetHp0Ba,
B. I. Mattomok, B. I'. Bmxona, C.M. Spmomrok.

Merta. MeToro AoCIipkeHHs OyB MONTYK HOBUX MIIIICHEH
JUTA TU3aiiHy aHTHO10THKIB IPOTH METUIIITiH-PE3UCTEHT-
Horo mramy S. aureus (MRSA) MeTonamu po3paxyHKOBOT
nporeoMikd. MeToau. [neHTH}IKAIS HETOMOJIOTIYHIUX
OLIIKIB IO JIFOICHKOTO TIPOTEOMY, BU3HAYCHHS TeHIB BaXK-
JIMBMX 1151 BiokuBaHHS MRSA Ta BCTaHOBIIEHHS HOBHU3HU
3HalACHUX MillleHed npoBomruTi anroputMamu BLAST.
3a gonomororo ytumit 6a3u ganux KEGG inentudikysa-

JI yHIKaJIbHI MeTabomivHi nusixu Oakrepiit. Kiituaay
JIOKaJIi3aIlito mpoTeiniB nependadany nporpamamu PSORT
v. 3.0.2, CELLO v. 2.5, iLoc-Gpos, ta Pred-Lipo.
TomonoriuHe MOJIETIOBAHHSI MIPOBOMIM BeO-cepBepamu
SWISS-MODEL, Phyre2, I-TASSER ta MODELLER.
PesyabTaTtu. [louatkoBy BHOIpKY Oyiio chopMOBaHO 3
npoteomiB mectu mramiB MRSA: ATCC BAA-1680,
H-EMRSA-15, LA MRSA ST398, MRSA 252, MRSA
ST772, UTSW MRSA 55. baratocraaiiinuii aHaji3 BH-
OpaHMX MpOTEOMiB 3a JoroMororo anroputMmy BLAST
JTO3BOJIMB 1I€HTH(]IKYBaTH [1Bi TIOTEHIIIITHI MOJEKYISAPHI
MIIIICHI — JWaJICHINIaTIMKIa3y Ta outok DItB, 1o Bigmo-
BiJ[AI0Th 3a/IAHKM BUMOT'aM: € BOXKJIUBUMH JIJIsl BUKHBAH-
Hs 6aKTepii, € acoliioBaHUMH 3 MEMOpaHaMH, HE € TOMO-
JIOTaMH JIFOJICBKUX OUTKIB, 3aJTy4eHi 10 YHIKaJIbHUX MeTa-
OONIYHUX NUIAXIB Ta paHille He JOCTIHKYBAIUCH SK Te-
parieBTruHa MimeHb. Bymo moGymoBaHO MPOCTOPOBi
CTPYKTYpH 3HalIeHUX NMPOTEiHiB. BUCHOBKH. Y pe3yib-
TaTi TOCIiHKEHHS METONaMHU JIiHIHHOT OioiH(opMaTHKu
3aIpOITOHOBAHO JIBi MOTESHINIMHI MIIlIeHI — WA IeH1IaTIIH-
Kia3y Ta outok DItB, st moganbiroi po3podku aHTHO10-
THKIB IIPOTH METHIMTiH-PE3UCTEHTHOTO MTaMy OakTepii
Staphylococcus aureus MeTogaMu parlioHaIBHOTO TOMIYKY
JIKapChKUX 3aCO0iB.

Kawuoi caosa: MRSA, MDR-PA, nopiBHsuTEHA
IIPOTEOMIKa, TOMOJIOTIYHE MOJICIIFOBAHHS, MOJICKYJISIPHI
MIIIICHI.

IMouck HOBBIX MeMOPAHOCBA3aHHBIX
MOJIeKYJISIDHBIX MHIIEHeH 1JIsl pa3padoTku
aHTHOHOTHKOB NMPOTUB METHIIN/INH-
Pe3MCTeHTHOro mramma Staphylococcus aureus

in silico

A. 1O. Ilepnarui, I'. I1. Bonunen, M. B. IIporonomnos,
B. M. Cantenkun, JI. B. ITnetuésa, B. 1. Martromox,
B. I'. Baxona, C. H. SIpmontoxk.

Heasn. OnpenennTs HOBBIE MUIICHU [UTA IW3aiiHa aHTH-
OMOTHKOB MPOTHB METUII-THH-PE3UCTCHTHOTO IITAMMa
S. aureus (MRSA) mMeromamu pacdeTHOH IPOTEOMHKH.
Mertoabl. neHTnuKanys HEroMOJIOTHYHBIX ITOCIEH0-
BaTENILHOCTEH C YeIOBEUECKUMH, OIIPE/ICIICHNE KpUTHYe-
ckux Ui BepKuBaHUS MRSA GenkoB u onperneeHie ux
HOBH3HBI KaK TEPANEBTUYECKUX MHUIIIEHEH TPOBOIMIOCH
anropurMamu BLAST. Ipu nomorum ytumur 6a3sl JaH-
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HeIX KEGG naeHTHOHIMPOBAIN YHUKAILHBIE MeTA00H-
yeckue MyTH Oakrepun. KileTouHyto JIoKaIi3amnmo onpe-
JIeNsiI TiporpaMMHbBIM obectieueHreM PSORT v. 3.0.2,
CELLO v. 2.5, iLoc-Gpos u Pred-Lipo. ['ommonoriyeckoe
Mozenn ObUTM TOCTPOEHBI Beb-cepBepamu SWISS-
MODEL, Phyre2, I-TASSER u nporpammoit MODELLER.
Pe3yasrarsl. [lepBoHaganbpHas BEIOOpKa OBLIA COCTaBITE-
Ha ¢ poteomoB Tectu mraMMoB MRSA: ATCC BAA-
1680, H-EMRSA-15, LA MRSA ST398, MRSA 252,
MRSA ST772, UTSW MRSA 55. MuorocraauitHbIi
aHalln3 OTOOPAHHBIX MPOTEOMOB ammroputMoM BLAST
TMO3BOJIMI MACHTU(HUIINPOBATh JIBE MOTCHIIMAIILHBIE MO-
JICKYJISIPHBIC MUTIICHY: THaICHUIATITNKIIa3y U Oeok DItB,
COOTBETCTBYIOIINE KPUTESPHSIM KPUTHIHOCTH JUTSI BEDKHU-
BaHMs1, KOTOPHIE HE TOMOJIOTMYHBI K YEIOBEYECKUM Oell-
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KaM, paHee He MCCIeIOBAINCH ITPH pa3paboTke aHTHOMO-
TUYECKHUX CPEJICTB M JIOKAIIM30BaHEI B MeMOpaHe. Taxke
ObUIa MOCTPOCHA TPEXMEPHAST MOJICITh HAMICHHBIX MUIIIC-
Heil. BeiBoabl. B Xoze vcciiemoBanms, METOIaMU JIMHEH-
HOM OnonH(pOpPMAaTHKH OBLIO OTIPE/IEIICHO J1Ba OeTKa-MH-
IIICHU — JUaJICHUIATITNKIIa3a 1 Oenok DItB, miist mocnemy-
foret pa3pabOTKH aHTHOMOTHIECKUX MIPENapaToB MPOTHB
METHIWUIMH-PE3NCTEHTHOTO mTamMa Staphylococcus
aureus MeTo/IaMH PAIlMOHAILHOTO ITOKCKA JICKAPCTBECHHBIX
CPEACTB.

KawueBbie ciaoBa: MRSA, MDR-PA, cpaBauTens-
Hasl IPOTEOMHKA, TOMOJIOTMIECKOE MONICIIUPOBAHUE, MO-
JIEKYJISIPHbIC MHIIICHH.
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