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Aim. To review mechanisms of regulation of expression and the functionality of two isoforms 
of translation elongation factor eEF1A in mammalian cells. Results. eEF1A1 and eEF1A2 
proteins are regulated by post-translational modifications, protein-protein and protein-tRNA 
interactions as well as by controlling the amount of their mRNAs in human cells. Conclusions. 
EEF1A1 mRNA levels in cancer cells may depend on the allelic copy number while the level 
of EEF1A2 mRNA may be controlled by micro RNAs. eEF1A2 protein activity in different 
cellular processes may be determined, in part, by its increased affinity for tRNA and viral 
RNAs as compared to eEF1A1. eEF1A1 activity can be regulated by its increased susceptibil-
ity to post-translational modifications (PTM) and protein-protein interactions (PTI) as compared 
to eEF1A2.
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Two tissue specific isoforms of translation 
elongation factor 1A (eEF1A1 and eEF1A2), 
with mutually exclusive expression, provide 
efficient delivery and binding of aminoacyl-
tRNA to 80S ribosomes [1]. eEF1A2 functions 
in neurons, myocytes, cardiomyocytes and 
some other highly specialized cells while 
eEF1A1 contributes to mRNA translation in 
all other tissues of Mammalia [2].

A number of non-translational processes 
involving eEF1A are described suggesting that, 

due to its high abundancy, eEF1A may serve 
as an important hub protein which connects 
different cellular activities [3]. It contributes 
to cell cycle progression [4], chaperon-medi-
ated autophagy [5], apoptosis [6], lypotoxic 
cell death [7], protein renaturation [8], endog-
enous proteolysis [9], lysosome biogenesis 
[10], spermatogenesis [11] and multiple cyto-
skeleton rearrangements [12–14].

Normally the expression of eEF1A2 in the 
organism is restricted by a small number of 
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tissues, however, the appearance of this iso-
form was registered in the cancer tissues of 
different localization [15]. In some cases, such 
as ovary cancer, the proofs of its true onco-
genic action have been obtained [16, 17]. 
Contrary to this, conflicting information is 
present on the cancer links of the eEF1A1 
isoform [18, 19]. 

Because of proto-oncogenic features of 
eEF1A2, its tissue specific expression should 
be precisely maintained. In addition, the con-
trol of the eEF1A1 and eEF1A2 functioning 
is implemented at the protein level as well. 
The ways how the organism exercises such 
regulation are mostly unknown. The isoform-
specific ways of control are involved in spe-
cifically inducing/inhibiting expression and/or 
functioning of eEF1A1 or eEF1A2. This re-
view is focused on several possibilities to con-
trol the amount and activity of the isoforms in 
some translational and non-translational pro-
cesses at the post-transcriptional and protein 
levels. The potential regulation mechanisms 
involving microRNA, post-translational mod-
ifications (PTM), protein-protein interaction 
(PPI) and interaction with RNA are discussed.

1. Regulation of EEF1A1  
and EEF1A2 mRNA
Regulation of the amount of eEF1A1 and 
eEF1A2 isoforms in cells can be performed at 
the transcriptional and post-transcriptional lev-
els. The proteins eEF1A1 and eEF1A2 are 
similarly stable in mammalian cells [20] so the 
specifically accelerated degradation of one 
isoform is highly unlikely. On the contrary, the 
mRNAs coding eEF1A1 or eEF1A2 show 
quite different half-lives [20] suggesting the 
control of eEF1A mRNAs stability could be 

among the important regulatory factors for the 
eEF1A proteins. Based on the bioinformatics 
analysis we have suggested that the post-tran-
scriptional regulation of the eEF1A2 expres-
sion could be microRNA-mediated [21] and 
predicted that the microRNAs which may spe-
cifically target 3’UTR of eEF1A2 mRNA, 
could be important regulators of eEF1A2 in 
cancer progression and during myoblast dif-
ferentiation [22]. Subsequently, an experimen-
tal evidence to the role of microRNAs in the 
cancer-related elevation of the eEF1A2 level 
has been obtained [23].

Among four predicted high-scored 
microRNA s, the two, miR-663 and miR-744, 
have been shown to be positive in luciferase 
test specifically targeting the 3’UTR of 
eEF1A2 mRNA. Importantly, no cooperative 
action of these miRNAs on EEF1A2 mRNA 
has been observed. Then, the actual micro-
RNA binding sites were identified in 3’UTR 
EEF1A2 by combination of bioinformatics and 
mutational analysis. 

Subsequent experiments were conducted 
using human breast cancer cell line MCF7. 
The addition of extra amounts of these mi-
croRNAs to MCF7 cells inhibited the level of 
EEF1A2 mRNA by 30–50 %. Even more im-
portantly, an increase in miR-663 and miR-744 
amount caused a significant reduction of the 
amount of the eEF1A2 protein. The addition 
of siRNA directed to EEF1A2 mRNA led to 
the effect similar to the effects induced by the 
micro RNAs supporting EEF1A2 mRNA as a 
target of miR-663 and miR-744.

At the cellular level, addition of miR-663 
and miR-744 had a negative effect on prolif-
eration of MCF7 cells. Similar effect was ob-
served after treatment of MCF7 cells with the 
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anti-eEF1A2 siRNA, suggesting that anti-pro-
liferative effect of micro RNAs was achieved 
due to targeting EEF1A2 [23].

Thus, we have shown that microRNA-me-
diated control can indeed contribute to the 
regulation of the eEF1A2 amount in cancer 
cells. The eEF1A2-based mechanism of the 
inhibition of cancer growth by the same mi-
croRNAs has been recently confirmed for pan-
creatic cancer as well [24]. However, one 
should keep in mind that EEF1A2 is not the 
only target of these microRNAs. The novel 
miR-663 targets are transforming growth 
factor-β1 [25], proteins PUMA/BBC3 and 
BTG2 [26], cyclin-dependent kinase inhibitor 
2A [27]. The novel miR-744 targets are nucle-
ar factor I X (NFIX) and heterogeneous nucle-
ar ribonucleoprotein C (HNRNPC) [28], on-
cogene Notch1 [29], matrix metallopeptidase 
9 (MMP-9) [30]. As these targets are also re-
lated to the cancer development, one cannot 
be absolutely sure that targeting eEF1A2 is the 
only mechanism of anti-cancer action of these 
microRNAs. However, the role of microRNAs 
in the control of eEF1A2 amount in cells at 
post-transcriptional level is considered to be 
proved by now.

On the contrary, an amount of eEF1A1 
mRNA in breast cancer is significantly de-
creased [18]. It was noticed that the EEF1A1 
mRNA expression declines with tumor inva-
sion, dissemination to lymph nodes, at ad-
vanced stage and post-menopause. It was con-
cluded that the low EEF1A1 mRNA expression 
could be an independent marker for poor prog-
nosis of ER+ breast cancer. It was shown that 
under-expression of the EEF1A1 mRNA was 
not related to the promotor hypermethylation 
or EEF1A1 mutations, however, it was di-

rectly linked to the EEF1A1 allelic copy num-
ber loss and cell cycle-associated expres-
sion [18].

2. Regulation of eEF1A by 
posttranslational modifications
We switch now to the ways to control the 
eEF1A isoforms functionality in cells. Post-
translational modifications (PTM) represent a 
classical tactic to regulate the protein activity. 
There are several classes of PTM, including 
those acting on chromatin (methylation and 
acetylation), involved in signal transduction 
pathways (phosphorylation) and a number of 
other alterations of proteins. eEF1A belongs to 
the proteins subjected to different kinds of 
modifications including above mentioned phos-
phorylation, methylation and acetylation, as 
well as ubiquitination, sumoylation, succinyl-
ation, S-nitrozylation, glucosylation, S-glutha-
tylation, carbonylation etc. The location of the 
amino acid residues subjected to certain mod-
ifications in the structure of eEF1A is not al-
ways known, and the effect of the most of these 
modifications on the eEF1A activity is not clear 
so far. We will limit the review by relatively 
well described phosphorylation and methyla-
tion of eEF1A. The X-ray structure of eEF1A2, 
obtained by us recently [31, 32] is helpful for 
analysis of the effect of modifications in terms 
of spatial structure of the protein.

According to the PhosphositePlus database 
(https://www.phosphosite.org) the eEF1A1 
molecule is more heavily modified than 
eEF1A2. The most frequently modified the 
phosphorylation sites in eEF1A1 and eEF1A2 
are Tyr29 and Tyr141. Due to their intramo-
lecular location, these sites were suggested to 
be mainly of structural importance [33]. 
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However, after deciphering the eEF1A2 X-ray 
structure it was noticed that phosphorylation 
of Tyr29 can preclude the Tyr29–Trp58 inter-
action in eEF1A2 which, in turn, can influence 
stability of the A-A’ helices linkage and result 
in an impairment of translation. Thus, the pool 
of eEF1A containing phosphoTyr29 may be 
directed to the non-translational processes in 
which eEF1A is involved [32].

The less frequent phosphorylation of Tyr85, 
Tyr86, Tyr162, Tyr254 and Tyr418 which are 
situated on the surface of the eEF1A molecule, 
is likely important for regulation of the interac-
tion of eEF1A with some protein partners [33]. 

Phosphorylation of Ser21 in eEF1A could 
be important for the protein dimerization [34] 
while eEF1A dimers are suggested to be cru-
cial for actin bundling [35]. Recently, the di-
meric form of eEF1A has been proposed as an 
efficient target model for anti-cancer drugs 
directed towards inhibition of eEF1A [36] 
which suggests cytoskeleton-related mecha-
nism of the phosphoSer21 involvement in 
C-Raf-induced apoptosis [34].

Methylation of Lys36, Lys55, Lys79 Lys165 
and Lys318 has been found in mammalian 
eEF1A1 [37]. N-terminal α-amine trimethyl-
ation has been also found [38]. Some of these 
residues were reported to be alternatively 
acetylated [39]. Possible regulatory importance 
of the methylation/acetylation and phosphory-
lation/acetylation switches has been recently 
discussed [40]. Methylation of Lys79 and 
Lys318 is conserved in eukaryotes whereas 
methylation of Lys36 and Lys55 is conserved 
across most multicellular eukaryotes [37] 
which suggests a significance of such meth-
ylation. The methylation of each site is per-
formed by a different methyltransferase [41]. 

The methylation could be a modulating rather 
than critically important factor for eEF1A, as 
none of these methyltransferases are essential 
in human cell lines [42].

 It is worthy to note that ribosomal profiling 
data showed that the absence of Lys165 meth-
ylation in human cells resulted in multiple 
effects such as changes in ribosome biogene-
sis, chromatin, the endoplasmic reticulum and 
the unfolded protein response [43]. According 
to another ribosome profiling data set, the 
absence of Lys36 methylation may induce an 
increased translation of ribosomal proteins 
whereas the translation of the proteins associ-
ated with tRNA aminoacylation (aminoacyl-
tRNA synthetases and related proteins) can be 
decreased [44]. The translation of proteins 
representing endoplasmic reticulum was also 
reduced. Moreover, the lack of methylation of 
Lys36 influenced the translation rates for some 
codons. Importantly, a similar effect was ob-
served upon the absence of Lys55 methyla-
tion [38]. 

Possible mechanisms responsible for a link 
between Lys 36, Lys55 and Lys 165 methyla-
tion in eEF1A1 and multiple ribosomal effects 
remains to be studied. The X-ray structure of 
eEF1A2*GDP [31, 32] and cryoEM structures 
of eEF1A1 at different elongation steps on the 
80S ribosome [45] show that the methylated 
residues of eEF1A are situated rather far from 
the ribosome in the eEF1A-ribosome complex 
and apparently not involved into the interaction 
with the translational partners of eEF1A. 
Therefore, it appears difficult to realize why 
the translation of one protein is influenced and 
the other is not. Additional problem of the 
understanding of this effect is related to the 
apparently dynamic character of the methyla-
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tion of eEF1A which was reported at least in 
the case of Lys165 methylation in HeLa cells 
[43] representing a mixture of non-methylated, 
mono-, di- and tri-methylated residues. 
However, the dynamic methylation is not a 
rule as, for instance, trimethylated Lys-36 spe-
cies was found to be predominant in various 
mammalian cells and tissues [44]. 

Elucidation of a functional effect of the 
eEF1A modifications becomes even more com-
plicated if one would take into account a pos-
sibility of “cross-talk” between different modi-
fication types. For instance, phosphorylated 
Ser163 is situated near Lys165 which is di-
methylated in the A1 isoform and trimethylated 
in the A2 isoform. In this case, cross-talk be-
tween the modifications can form an exclusive 
isoform-specific local landscape, which can 
contribute to the differential distribution and/
or functions of eEF1A1 and eEF1A2 via in-
teraction with different protein partners [32].

3. Regulation of eEF1A by 
macromolecular partners
It is becoming increasingly clear that the pro-
tein-protein interaction network provides a 
significant contribution to the cell regulation 
processes. Alterations in these interactions can 
introduce a disorder in the interconnected pro-
tein networks causing serious consequences 
for a cell. Until recently, main attention of the 
researchers was concentrated on deciphering 
and description of the signaling cross-talks, 
however, the recent reviews have shown good 
examples of regulatory importance of the pro-
tein-protein interactions as well [46–48].

For instance, histone methyl-transferase 
PRDM14 was shown to bind to transcription 
factor HOXA1 and negatively influenced its 

stability and activity [49]. The direct interac-
tion of transcription factor phosphate starva-
tion response 1 (PHR1) with its downstream 
target SPX1 was shown to regulate the PSI 
gene expression by tuning the PHR1-DNA-
binding equilibrium [50].

In Trypanosoma cruzi, the enolase ENO 
activity was inhibited by direct binding of 
metallocarboxypeptidase-1 and acireductone 
dioxygenase [51].

The role of protein-protein interactions in 
modulating synaptic plasticity in the hippo-
campus has been approached quite recently. 
The 14-3-3 family of proteins participates in 
the hippocampal long term potentiation pro-
cess (LTP). Protein RGS14 is implicated in 
suppression of LTP in the CA2 region of the 
hippocampus, thereby regulating hippocampal-
based learning and memory. These proteins 
were shown to directly interact in cells, and 
one of the two distinct interaction sties was 
shown to be phosphorylation independent 
while the other was phosphorylation-depen-
dent, contributing to negative regulation of 
RGS14 functions [52].

Peroxisome proliferator-activated receptor 
(PPAR) δ which is an established therapeutic 
target in different disorders, in ligand-activat-
ed form can directly interact with the proto-
oncogene product c-Myc. The interaction of 
PPARδ with c-Myc was shown to suppress the 
transcriptional activity of c-Myc and the ex-
pression of its target genes. Moreover, the 
PPARδ-dependent inhibition of c-Myc acti vi-
ty was associated with decreased tumorige ni-
city in breast cancer cells [53].

An interesting example of isoform-specific 
difference has been given recently for the two 
isoforms of the main regulatory subunits of 
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Class IA phosphatidylinositol 3-kinase (PI3K), 
p85α and p85β. These isoforms initiated dif-
ferent cellular activities due to their interaction 
with different regulatory proteins and indepen-
dently of their binding to the catalytic subunit 
p110 [54]. 

Thus, the important aspect for clarifying 
how the isoform-specific functions of eEF1A1 
and eEF1A2 are controlled in mammalian cells 
is the understanding of whether these isoforms 
are able to bind different protein targets, or the 
same target but with different affinity.

The strong background for the potential 
interaction dissimilarity is provided by our 
data on significant difference in spatial struc-
tures of the isoform proteins. eEF1A1 was 
shown to have an open structure while eEF1A2 
possesses closed, compact form [55, 56]. Also, 
different accessibility to Tyr phosphorylation 
hinted on the possible variation in local spatial 
organization of the isoforms [57]. Multiple 
molecular dynamic simulations indicated spe-
cific molecular regions which could be differ-
ent in the two isoforms and consequently con-
tribute to the different ability to interact with 
protein partners [58].

Indeed, a different spatial organization of 
the eEF1A1 and eEF1A2 proteins was shown 
to correlate with their different ability to inter-
act with a number of partners. Most impor-
tantly, a possibility of a regulatory effect of 
such difference was demonstrated. For in-
stance, eEF1A1 was able to form a strong 
complex with calmodulin in the presence of 
Ca2+ whereas eEF1A2 was not [59]. This phe-
nomenon becomes even more interesting in 
light of the ability of calmodulin to compete 
with tRNA for eEF1A1 [59]. Importantly, one 
more player in the elongation cycle, translation 

elongation factor 1Bα, responsible for nucleo-
tide exchange in eEF1A, interacts with the 
same area of eEF1A [60]. Thus, a multiple 
regulatory effect of calmodulin on translation 
is possible. The inability of eEF1A2 to interact 
with calmodulin suggests a lack of such regu-
lation in excitable tissues where eEF1A2 is 
exclusively expressed. This might evidence 
some mechanism of protection of the protein 
synthesis process from the sharp and perma-
nently occurring changes in Ca2+ concentra-
tions in some specialized eEF1A2-specific 
cells.

A well-known cellular partner of eEF1A in 
eukaryotic cells is actin. The eEF1A1-actin 
interaction was demonstrated long time ago 
[61] while the information about the actin-
eEF1A2 interaction was absent until recently 
when the different shape of F-actin bundles 
formed in the presence of eEF1A1 or eEF1A2 
was discovered [59]. As actin cytoskeleton 
shows significant perturbations in cancer cells 
[62], the oncogene eEF1A2 may contribute to 
these changes. 

We have shown that eEF1A1-mediated bun-
dling of F-actin decreases significantly in the 
presence of Ca2+-calmodulin [59]. Thus, the 
interaction of eEF1A1 with F-actin may be 
controlled by calmodulin in Ca2+-dependent 
manner whereas there is no calmodulin-depen-
dence of the eEF1A2-F-actin interaction. It 
means that, upon a high level expression of 
eEF1A2 in a normally non-specific for eEF1A2 
tissue, newly appeared eEF1A2 may stay be-
yond conventional for eEF1A1 regulation in 
this tissue. This can permit eEF1A2 to take 
part in the cellular processes different from 
those involving eEF1A1, including oncogenic 
transformation.
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Protein Sgt1 is a multifunctional protein, 
one of its roles is to contribute to the anti-viral 
protection of an organism via “non-host” re-
sistance [63], this permits to suggest that Sgt1 
could be an important factor limiting the viral 
multiplication via unknown yet mechanism 
[64]. As there are several reports on the posi-
tive involvement of eEF1A in viral pathogen-
esis as well [65–67], a possibility of the inter-
action of the two proteins was checked and 
confirmed [68]. It was shown that the eEF1A1 
isoform readily forms a complex with Sgt1 
while eEF1A2 does not. 

eEF1A1 can interact with viral RNA and/
or RNA polymerase [69]. As one of the Sgt1 
domains is highly negatively charged it can 
mimic the negatively charged surface of RNA. 
Molecular docking experiments showed that 
this domain can be involved into the interac-
tion with eEF1A1. Therefore, it appeared 
likely that antiviral protein Sgt1 can compete 
with viral RNA for eEF1A1. This possibility 
was tested in the direct in vitro experiments 
showing that Sgt1 can force RNA of tobacco 
mosaic virus out of eEF1A1 [68]. Also, the 
excess of this RNA negatively influenced for-
mation of the eEF1A1-Sgt1 complex. These 
data suggest a possibility of the novel mecha-
nism of the antiviral Sgt1 action relying on the 
competition of Sgt1 with viral RNA for pro-
viral eEF1A1.

Interestingly, eEF1A2 shows an increased 
affinity to viral RNA [68] and, at the same time, 
this interaction cannot be influenced by Ca2+-
calmodulin [59]. This suggests a possibility of 
the strong pro-viral action of eEF1A2 which 
could be a subject of further investigations.

Thus, the protein-protein or the protein-
RNA interplay can be an important factor 

which controls eEF1A functioning in the trans-
lational and non-translational processes in the 
eukaryotic cell.

4. eEF1A*GDP*aminoacyl-tRNA-me-
diated regulation of mRNA translation
In eukaryotic cells, the movement of the ribo-
somes along mRNA is controlled mainly by 
the various strength of the different codon-
anticodon interactions and the effects of the 
secondary structure of mRNA [70]. The elon-
gation factors are involved as well, but the 
main target for regulation is believed to be the 
elongation factor eEF2 [71] whereas eEF1A 
does not attract much attention as a regulatory 
agent for translation. Recently we have pub-
lished a hypothesis describing a possible sig-
nificance of the nature of eEF1A*GDP*amino-
acyl-tRNA complexes present in the A site of 
80S ribosomes for the ribosomal elongation 
rate. It is based on our previous estimations of 
different stability of the eEF1A*GDP com-
plexes with different tRNA [72, 73, 74] and 
recent cryoEM data showing that a substantial 
amount of eEF1A*GDP is bound to aminoac-
yl-tRNA in the mammalian 80S ribosome [45]. 
We hypothesized that the unexpected presence 
of the eEF1A*GDP*aminoacyl-tRNA complex 
in the mammalian ribosomes suggests a criti-
cal importance of the eEF1A*GDP dissocia-
tion step for the proceeding of the elongation 
step of translation in Mammalia. That is quite 
opposite to what is known about the prokary-
otic elongation where aminoacyl-tRNA dis-
sociates from EF-Tu*GDP immediately after 
GTP hydrolysis [75]. Importantly, the transla-
tion elongation rate of the prokaryotic ribo-
somes normally exceeds that of the eukary-
otic ones [76, 77]. Thus, slow dissociation of 
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eEF1A1*GDP from aminoacyl-tRNA residing 
on the 80S ribosome can be the rate-limiting 
step of translation elongation. Importantly, the 
affinity of eEF1A*GDP for tRNA of different 
specificities is not equal, i.e. dissociation con-
stants of different complexes were calculated 
to vary in a range of one order of magnitude 
[78]. One cannot exclude that the kinetic pa-
rameters of dissociation of the different 
eEF1A*GDP*aminoacyl-tRNA complexes are 
diverse as well. If the dissociation rates of the 
eEF1A*GDP complexes with various amino-
acyl-tRNAs situated in the ribosomal A site 
are different, this may influence the ribosomal 
elongation rate in general, depending on the 
tRNA nature. Consequently, this provides a 
novel mechanism explaining how the rate of 
mRNA translation can depend on amino acids, 
coded by this mRNA. Here, eEF1A*GDP and 
tRNA play a role of signal transmitters. In such 
a way eEF1A may control the elongation rate 
independently from the codon-anticodon cor-
respondence and the mRNA secondary struc-
ture. 

Importantly, apart from the general elonga-
tion control, this mechanism can be respon-
sible for different efficiency of ribosomal elon-
gation of nascent polypeptides in the presence 
of the eEF1A1 or eEF1A2 isoforms. It is 
known that the complexes of eEF1A2*GDP 
with tRNA are essentially more stable that 
analogous complexes of eEF1A1*GDP [74]. 
If out hypothesis is correct, a less efficient 
translation elongation should be observed in 
the presence of eEF1A2 rather than eEF1A1. 
A suitable model to check a validity of the 
assumption is glial and neuronal cells of the 
brain. It is known that eEF1A1 is exclusively 
present in glial cells while eEF1A2 is the only 

eEF1A isoform found in neurons [79]. Indeed, 
the literature data on ribosomal transit time in 
both kinds of cells showed that in the presence 
of eEF1A2 the elongation rate is nearly 7 times 
slower than in the presence of eEF1A1 [80, 
81]. A slower elongation rate in such highly 
specialized cells as neurons, myocytes and 
cardiomyocytes where the only expression of 
eEF1A2 is observed, is probably useful to 
decrease translation errors as the rate of elon-
gation may be inversely proportional to the 
elongation fidelity [82, 83]. In the cancer cells 
demonstrating decreased translation fidelity 
[84] the appearance of oncogenic eEF1A2 may 
contribute to smoothing out this apparently 
negative effect. 

Consequently, eEF1A*GDP can contribute 
to the translation efficiency at the level of its 
dissociation from the 80S ribosome depending 
on the nature of aminoacyl-tRNA bound. 
Moreover, as eEF1A2 shows an increased as 
compared to eEF1A1 strength of the 
eEF1A*GDP*tRNA complexes, the efficiency 
of polypeptide elongation on certain mRNAs 
in the presence of eEF1A2 could be less than 
in the presence of eEF1A1. These predictions 
show a novel possibility of the eEF1A*GDP-
mediated regulation of the ribosomal elonga-
tion rate.

5. Concluding remarks
This review describes several ways to control 
the eEF1A isoforms in mammalian cells 
(Fig. 1). They could affect both the amount 
and functionality of the eEF1A proteins 
in vivo.

The amount of the eEF1A1 and eEF1A2 
proteins in the cell is regulated at the level of 
their synthesis rather than degradation. Namely, 
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the level of eEF1A1 mRNA in tumors is down-
regulated, in particular, due to the EEF1A1 
allelic copy number loss while the overexpres-
sion of eEF1A2 mRNA occurs mainly due to 
the micro-RNA mediated regulation. 

The functionality of the eEF1A1 and 
eEF1A2 proteins can be regulated by several 
ways including different post-translational 
modifications and distinct abilities of the iso-
forms to interact with different RNA and pro-
tein partners. eEF1A1 shows the increased 
ability to interact with various protein partners 
and is more subjected to the post-translational 
modifications, as compared to eEF1A2. 
However, eEF1A2 demonstrates a stronger 
than eEF1A1 ability to form the complexes 
with different RNAs, including tRNA of vari-
ous amino acid specificities and viral RNA.

It was assumed that the eEF1A2 protein 
may be less important (compared to eEF1A1) 
at least for Ca2+-modulated cellular control 
[59]. In such way the translation process in 
muscle, myocardial and neuronal tissues could 
resist to permanent changes in Ca2+ concentra-
tions occurring in these tissues. In the case the 
proto-oncogenic eEF1A2 expression is initi-

ated in the tissues where the exclusive func-
tioning of eEF1A1 is normally observed, the 
eEF1A2 isoform cannot be regulated in 
eEF1A1-specufic manner, thus acting beyond 
control and acquiring oncogenic proper-
ties [59].

eEF1A1 is a known pro-viral agent which 
can bind viral RNA and RNA-polymerase and 
accelerate virus replication [15]. Consequently, 
another disease-related capacity of eEF1A2 
may be coupled to the increased, as compared 
to eEF1A1, RNA-binding ability of the former. 
Because of this, a role of eEF1A2 in viral 
replication could be even more pronounced 
than that of eEF1A1. One cannot exclude that 
oncogenic eEF1A2 may significantly contrib-
ute to elevated expression of viral genomic 
RNA, infectious virus proliferation and the 
release of cancer-related RNA-containing vi-
ruses, such as viruses of hepatitis B and hepa-
titis C [85, 86], Moloney murine leukemia 
virus-1 [87] etc. 

Thus, despite a very high sequence homol-
ogy and similar translation involvement in 
different tissues, the eEF1A1 and eEF1A2 
isoforms are very different in both terms of 

Fig. 1. Regulation of the eEF1A1 
and eEF1A2 isoforms. PTM — post-
translational modifications, PPI — 
protein-protein interactions. Bold 
arrows indicate stronger effect while 
plain arrows indicate milder effect of 
the same effector on one isoform as 
compared to another isoform.
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spatial organization of their macromolecules 
and regulation of their activity. The described 
regulatory mechanisms specific for each iso-
form are mostly based on the in vitro studies 
and now await further analysis at the level of 
organism.
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Контроль кількості і функціональності ізоформ 
eEF1A1 і eEF1A2 в клітинах ссавців

Б. С. Негруцький, О. В. Новосильна, 
Л. В. Порубльова, А. А. Вісловух

Мета. Представити короткий огляд деяких механіз-
мів, за допомогою яких клітини ссавців контролю-
ють експресію і функціональність двох ізоформ 
фактора елонгації трансляції eEF1A. Результати. 
Описано клітинну тактику контроля білків eEF1A1 
і eEF1A2 за участі пост-трансляційних модифікацій, 
білок-білкових та білок-РНКових взаємодій, а також 
регуляції кількості і стабільності EEF1A1 і EEF1A2 
мРНК. Висновки. Рівень мРНК, що кодує еEF1A1 
в ракових клітинах, може залежати від зміни кіль-
кості алельних  копій, у той час, коли рівень EEF1A2 
мРНК може контролюватися за допомогою мікро 
РНК. Активність білка еEF1A2 в різних клітинних 
процесах, може визначатися, зокрема, підвищеною, 
в порівнянні з еEF1A1, афінністю до тРНК і вірусної 
РНК. В свою чергу, активність  еEF1A1 може регу-
люватися підвищеною, в порівнянні з еF1A2, до-
ступністю цього білка до пост-трансляційних моди-
фікацій і білок-білкових взаємодій.

К л юч ов і  с л ов а: Фактори елонгації трансляції, 
регуляція, білкові ізоформи.

Контроль количества и функциональности 
изоформ eEF1A1 и eEF1A2 в клетках 
млекопитающих

Б. С. Негруцький, О. В. Новосильна, 
Л. В. Порубльова, А. А. Вісловух

Цель. Представить краткий обзор некоторых механиз-
мов, с помощью которых клетки млекопитающих 
контролируют экспрессию и функциональность двух 
изоформ фактора элонгации трансляции еEF1A. 
Результаты. Описано клеточную тактику контроля 
белков eEF1A1 і eEF1A2 с участием пост-трансляци-
онных модификаций, белок-белковых и белок-РНКо-
вых взаимодействий, а также регуляции количества и 
стабильности EEF1A1 і EEF1A2 мРНК. Выводы. 
Уровень мРНК, которая кодирует еEF1A1 в раковых 
клетках, может определяться измененным количеством 
аллельных копий, в то время как уровень мРНК, коди-
рующей еEF1A2, может контролироваться посред-
ством микроРНК. Активность белка еEF1A2 в разных 
клеточных процессах может определяться, в частности, 
его увеличенной, в сравнении с eEF1A1, аффинностью 
к тРНК и вирусной РНК. В свою очередь, активность 
eEF1A1 может регулироваться увеличенными, по срав-
нению с eEF1A2, подверженностью этого белка 
пост-трансляционным модификациям и доступностью 
для белок-белковых взаимодействий.

Ключевые слова: Факторы элонгации трансляции, 
регуляция, белковые изоформы.
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