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Many proteins in mammalian organism exist as isoforms. These isoforms can be encoded by 
different genes or produced by alternative splicing of one gene. Despite rapid instrumental 
progress in the isoform identification, the reasons for their existence and specific functions 
remain largely unknown. During recent years, attention of researchers was mostly concen-
trated on spliced isoforms, while the variants of the same protein coded by different genes can 
play an essential role in different cell processes. This review presents examples of different 
potential functions of the protein isoforms coded by different genes. Molecular background 
which could provide a difference between highly homologous protein variants is discussed 
with an example of isoforms translation elongation factor 1A (eEF1A). 
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1. Origin of the protein isoforms

The protein isoforms are closely related gene 
products which can perform both similar and 
quite different biological functions. The iso-
forms may differ by biological activity, regula-
tory potential, intercellular distribution, differ-
ent spatio-temporal expression etc. The protein 
isoforms are either products of the same gene 
or the family of genes originated from a single 
predecessor. 

In the first case, a single gene produces 
several mRNAs by separation and subsequent 
re-joining of the pre-mRNA exons. Generation 
of alternative exons is achieved by i) tandem 

duplication with subsequent divergence of 
exons; ii) translocation of exons into novel 
gene context; iii) mutations in the intron or 
flanking sequence with creation of N-terminal, 
C-terminal or internal exons [1]. The alternate 
splicing of equivalent homological exons may 
have evolutionary importance, as the exchange 
of homological exons may lead to fine tuning 
of functions of the corresponding protein. On 
the contrary, a bulk of the alternative splicing 
isoforms is predicted to arise due to the large 
insertions or deletions, or non-homologous 
substitutions. However, the precise proteomic 
experiments revealed only a small fraction of 
predicted alternative isoforms. It appears that 
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the vast majority of annotated alternative tran-
scripts may not ever be translated into pro-
teins [2].

In the second case, the multiple copies of 
the same gene are generated by at least three 
mechanisms: unequal crossing over during 
meiosis; tandem duplications resulting from 
DNA replication errors, or translocation of a 
gene copy to another chromosome [1]. 

Evolutionary development of multicellular 
organisms gave a ground to the appearance of 
the protein isoforms with specialized func-
tions. There are a number of examples of the 
different proteins isoforms fulfilling similar, 
diverse and sometimes antagonistic functions. 
We focus the review on the functional diver-
sity of the protein isoforms coded by different 
genes.

2. Dissimilar functions of the same 
protein isoforms
A family of scaffold proteins IQGAP (IQ Motif 
Containing GTPase Activating Protein) com-
prise three evolutionary conserved iso-
forms [3]. All three isoforms participate in 
controlling the dynamics of cytoskeleton, in-
tracellular signaling and provide a large 
amount of protein-protein interactions. Ho-
wever, IQGAP1 is expressed in all tissues, 
IQGAP2 is present mostly in liver whereas the 
expression of IQGAP3 is limited to brain, 
which indicates a likelihood of unique func-
tions of every isoform [4]. All three isoforms 
interact with actin [5–7] and calmodulin [5, 8, 
9]. However, for every isoform the specific 
protein partners were revealed: IQGAP3 binds 
only ERK1 [10], while IQGAP1 interact with 
both ERK1 [11] and ERK2 [12]. The interaction 
of IQGAP3 with annilin was shown, whereas 

both IQGAP1 and IQGAP2 could not interact 
with this protein [13]. In living cells, the inhi-
bition of the mRNA coding for IQGAP2 or 
IQGAP3, contrary to IQGAP1, negatively 
influenced both the growth and length of ax-
ons [4]. Interestingly, a number of known pro-
tein partners of IQGAP1 is much greater than 
for IQGAP2 and IQGAP3 [3]. The functional 
meaning of such difference awaits a special 
investigation. 

A family of plakophilins comprises three 
homologous isoforms. Until recently, plako-
philins were considered to be mostly the struc-
tural proteins, the desmosomal components, 
which increase cell adhesion due to binding to 
intermediate filaments of the cytoskeleton [14] 
Now it is known that plakophilins possess also 
a scaffold function, controlling a variety of 
cellular processes and participating in the de-
velopment of carcinogenesis, cardiomyopathy, 
hereditary diseases etc. [15, 16] This family is 
a good example of the unique and sometimes 
functionally antagonistic character of the pro-
tein isoforms. In particular, the isoforms differ 
by cellular localization and kinetics of desmo-
some formation de novo and are controlled by 
different mechanisms [17, 18]. Importantly, 
plakophilin 3 prevents the formation of hyper-
adhesive desmosomes in a protein kinase C 
alpha-dependent manner, even in the presence 
of plakophilin 1 which normally stimulates 
their formation contributing to the stable in-
tercellular co-adhesion [19].

Different participation of very similar iso-
forms in cell signaling is demonstrated by 
three closely related human genes Kras (4A, 
4B), Hras and Nras, the products of which are 
the main members of Ras subfamily of GTP-
binding proteins. The isoforms are encoded by 
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three different genes whereas Kras4A and 
Kras4B are produced due to differential splic-
ing of the exons. The isoforms differ in short 
C-terminal regions. For example, Kras4B con-
tains the polylysine sequence and a single 
farnesyl modification [20]. The isoforms differ 
at least by four C-terminal amino acid residues. 
This region is found to be responsible for the 
variation in the lipid post-translation modifica-
tions and membrane localization of the ras 
isoforms. Though the H-, N- and K-ras so-
forms show similar effector-binding properties 
they have different biological functions in the 
development, cell growth and oncogenesis. 
Quantification of spatiotemporal patterns of 
Ras isoforms expression during development 
showed a relative contribution of KRas4B > >  
NRas ≥ KRas4A > HRas to the total Ras expres-
sion with KRas4B typically representing 60–
99 % of all Ras transcripts. KRas4A was the 
most dynamically regulated Ras isoform with 
significant up-regulation of the expression 
observed in stomach, intestine, kidney and 
heart [21]. The functional divergence may be 
explained, at least partially, by different mem-
brane compartmentalization of the Ras iso-
forms [22]. Differential distribution of the Ras 
proteins on cell membranes may be respon-
sible for the unique spatio-temporal models of 
activation of the effector pathways including 
the potential and duration of the signal activa-
tion [23]. 

The isoforms of STAT5 protein represent 
another example of different participation of 
the protein isoforms in signaling. The STAT 
(Signal transducers and activators of transcrip-
tion) proteins are latent cytoplasmic transcrip-
tion factors coupling the intracellular signals 
with the target genes expression [24]. STAT5 

is directly activated by JAK2 kinase down-
stream from several cytokine receptors and 
oncogenic tyrosine kinase BCR-ABL. STAT5 
is represented by two proteins: STAT5A and 
STAT5B, which share 94 % structural homo-
lo gy, but are transcribed from separate ge-
nes [25] STAT5A was found preferentially in 
the mammary tissue while the STAT5B expres-
sion was observed mostly in muscle and li-
ver [26]. In the majority of functional tests 
STAT5A and STAT5B behave similarly [25]. 
However, downregulation of STAT5B by 
RNAi essentially inhibited the BCR-ABL-
dependent hematopoietic cells proliferation 
[27]. The STAT5B isoform rather than STAT5A 
is important for the expression of BCL-XL in 
the presence of BCR-ABL. Moreover, down-
regulation of STAT5B rather than STAT5A 
made the BCR-ABL-positive human cells sen-
sitive to the anticancer drug imanitib. 
Moreover, the expression of STAT5A and 
STAT5B showed opposite correlations with 
drug response gene expression [28]. 

One more example of a differential role of 
the isoforms in signaling is Rho-associated 
kinases ROCK1 and ROCK2, which are acti-
vated by RhoGTPase and control the cytoskel-
etal rearrangements. It was shown that despite 
more than 90 % homology of kinase domains 
it is the ROCK2 isoform which plays an ex-
clusive role in controlling plasticity of T-cells 
and macrophage polarization [29].

The adenine nucleotide translocase hANT 
which exchanges ADP for ATP in the mito-
chondrial inner membrane and participates in 
oxidative phosphorylation, is represented by 
three homologous genes, the expression of 
which is tissue-specific and depends on phys-
iologic state of a cell. hANT1 is mainly ex-
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pressed in terminally differentiated muscle 
cells; hANT2 is growth-regulated and is up-
regulated in highly glycolytic and proliferative 
cells; and hANT3 is considered to be ubiqui-
tous and non-specifically regulated [30]. The 
protein partners of the isoforms were found to 
be similar, and the absence of the main isoform 
hANT3 had no impact on the oxidative phos-
phorylation process [31]. However, the iso-
forms were found to be de-regulated in human 
tumors [2]. Recently, it has been shown that 
cancer cells require both hANT2 and hANT3, 
depending on their proliferation status: hANT2 
when proliferation rates are high, and hANT3 
when proliferation slows [30].

Thus, the homologous isoforms of the same 
protein can play different roles in human cells. 
Possible molecular background for such dif-
ference will be discussed below taking as an 
example the isoforms of translation elongation 
factor 1A (eEF1A). 

3. The eEF1A1 and eEF1A2 isoforms 
of translation elongation factor eEF1A
eEF1A is a translation elongation factor pro-
viding the GTP-dependent delivery of amino-
acyl-tRNA to the A site of the ribosome. 
Genome of mammalian cells comprises sev-
eral eEF1A sequences; however, the only 
eEF1A1 and eEF1A2 are actively transcribed. 
Remaining genes are considered retropseudo-
genes originated from eEF1A1 [32–34]. The 
EEF1A1 and EEF1A2 genes are localized on 
6q14 and 20q13.3 human chromosomes, cor-
respondingly [34]. The coding regions of the 
corresponding mRNAs are similar by 75%, 
while the 3’ and 5’ untranslated regions are 
completely different [35–37] which opens a 
way for differential control of the isoforms 

expression at the post-transcriptional level. The 
proteins eEF1A1 and eEF1A2 show 97 % 
homology and 92 % identity. Expression of 
the isoforms is tissue-specific and mutually-
exclusive. eEF1A1 is a major isoform present 
everywhere in the organism except neurons, 
muscles, including cardiac muscles [38, 39] 
and some specialized cells [40]. The impor-
tance of tissue-specific expression of eEF1A2 
is highlighted by “wasted” mutation in mouse. 
Normally, during postnatal development of a 
mouse the eEF1A1 isoform gradually disap-
pears from muscle and neurons being substi-
tuted with eEF1A2. “Wasted” mutation is a 
deletion of the eEF1A2 locus which makes 
impossible the expression of eEF1A2. As a 
result, one can observe in the “wasted” mice 
newborns the major neurological and immu-
nological impairments, starting with 21st day 
after birth, with their subsequent death on 28th 
day. These changes parallel the decrease in the 
eEF1A1 expression which cannot be compen-
sated by the appearance of eEF1A2 in wasted 
mouse [40, 41]. 

eEF1A1 is considered a pro-apoptotic pro-
tein whereas eEF1A2 shows anti-apoptotic 
properties [42, 43]. Importantly, eEF1A2 was 
shown to appear in a number of human cancers 
of different localization [44–46]. In some cas-
es, this isoform demonstrates the strong onco-
genic potential [45, 47]. The nature of onco-
geneity of eEF1A2 is not yet elucidated in 
detail. It is apparently not related to the gene 
amplification, mutations in the gene coding 
region and changes in the gene methylation 
[48] which suggest that the main contribution 
should be from a protein molecule per se. 
There are reports on the participation of 
eEF1A2 in JAK/STAT and AKT signaling in 
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mouse plasmacitomas [49], PI3K/AKT/
mTOR-dependent stabilization of MDM4 [50] 
and PI3K/Akt/NF-κB signaling in hepatocel-
lular carcinomas [51].

4. Functions of the eEF1A isoforms
Generally speaking, the translational functions 
of eEF1A1 and eEF1A2 which show tissue-
specific and mutually exclusive localization in 
an organism should not differ much. This no-
tion is supported by in vitro translation stu di-
es [52]. However, it does not preclude a vari-
ance in the isoforms interaction with other 
translation components. For instance, affinity 
of eEF1A2 for tRNA is somewhat higher than 
eEF1A1 [53]. GDP dissociation rate constant 
for eEF1A1 is several fold higher than for 
eEF1A2 [52]. eEF1A1 shows less affinity for 
EF1Ba, as compared to eEF1A2 [54] which 
permitted to suggest that eEF1A2 could be 
more dependent on the nucleotide exchange 
factors than eEF1A1. Peculiar in this regard is 
an observation that the ribosomal elongation 
rate (reverse to ribosomal transit time) is less 
in neurons where the only eEF1A2 is expressed 
than that in glial cells where eEF1A1 is an 
exclusive isoform [55, 56].

Thus, the main translational function of the 
two isoforms is similar; however, some details 
of the two isoforms performance during the 
elongation step may differ. One may speculate 
that this provides, for example, slower and, 
supposedly, more precise synthesis of proteins 
in neurons.

It has become evident that eEF1A plays in 
cells many non-translational functions as well. 
It is reported to be involved in the spermato-
genesis [57], cell cycle progression [58], chap-
eron-mediated autophagy [59], protein rena-

turation [60], apoptosis [61], lypotoxic cell 
death [62], endogenous proteolysis [63], cyto-
skeleton rearrangements [64]. It appears that 
eEF1A may serve as the important hub protein 
which links together different cellular pro-
cesses. An important and still unresolved prob-
lem is what could be the mechanism of the 
distribution of eEF1A between all these pro-
cesses. We suggest that the eEF1A1 and 
eEF1A2 isoforms may participate in different 
processes in cell. The physical basis for this is 
their different spatial organization, an ability 
to form dimers, different lipophilic properties 
[65–67], different number and level of post-
translational modifications [68–70]. The X-ray 
structure is only known for eEF1A2 [71]. The 
different features of the isoforms can be con-
sidered as providing a specific landscape for 
different protein-protein interactions of 
eEF1A1 and eEF1A2, which, in turn, should 
be a main contributing factor to their dissimi-
lar distribution between cellular processes.

Indeed, some evidence of differential abil-
ities of the isoforms to bind some protein part-
ners has been obtained. eEF1А2 was reported 
to bind peroxyredoxin 1 helping to protect 
against oxidative stress [72], and to interact 
with oncosupressor p16INK4a [73]. eEF1A1 
formed complexes with the multifunctiunal 
Sgt1 protein in vitro and in cellulo while 
eEF1A2 did not [74]. eEF1A1 rather than 
eEF1A2 interacted with calmodulin in Ca2+-
dependent way [75]. eEF1A is known to inter-
act with actin [76] probably due to its dimeric 
form [77]. Interestingly, the eEF1A1 and 
eEF1A2 isoforms induced the formation of 
differently shaped actin bundles [75] which 
could be important for a supposed role of 
eEF1A2 in oncogenesis. 
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Summarizing the information on the dis-
similarity in eEF1A1 and eEF1A2 interaction 
with different protein partners one may indi-
cate some important points to consider.

First, as eEF1A2 is found in the excitable 
tissues (nervous and neuronal) where the pro-
cesses of the Ca2+-mediated signaling involv-
ing a number of Ca2+binding proteins are very 
active, it has been suggested that eEF1A2 is 
less sensitive comparing to eEF1A1 to Ca2+-
mediated signaling [75]. This makes transla-
tion process more prone to the changes in the 
concentration of Ca2+ in these tissues. It has 
been proposed that one of the reasons of the 
appearance of the eEF1A2 isoform in evolu-
tion and the tissue-specific expression of this 
isoform is a need to protect mRNA translation 
in the specialized tissues from the influence of 
regular changes in the Ca2+ concentration ob-
served in these tissues, thus providing a steady 
level of protein synthesis.

Second, though an oncogenic role of 
eEF1A2 is still far from being elucidated, one 
may suggest that eEF1A2 avoids an eEF1A1-
adapted control in cancer tissues, thus acting 
in non-controlled or mis-controlled way. It has 
been proposed that actin-bundling role of A2 
should be specially considered as cancer-relat-
ed one [75] especially taking into account that 
the dysregulated actin bundling may play a key 
role in the metastatic processes [78, 79].

Finally, the evolutionary appearance of the 
isoforms of different proteins evidences for the 
existence of an additional level of the control 
of cellular processes. The mechanisms of iso-
form-specific regulation are not yet known in 
detail and their understanding still remains 
mostly at phenomenological level. Thorough 
examination of the functions and specific pro-

tein partners of the isoforms is needed to un-
cover the molecular instruments of the cell 
control which depend on the isoforms variance 
of cellular proteins.
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Ізоформи білків. Походження, структура 
та функції

О. В. Новосильна

Велика кількість білків в організмі ссавців існує у 
вигляді декількох ізоформ. Ці варіанти кодуються 
різними генами або є сплайсованими модифікаціями 
продуктів того ж самого гена. Незважаючи на швид-
кий інструментальний прогрес у ідентифікації ізо-
форм, причини їх існування та специфічні функції 
у більшості випадків залишаються достеменно не-
відомими. Останнім часом увага дослідників зде-
більшого зосереджена на сплайсованих ізоформах, 
у той час як різногенні білкові ізоформи можуть 
відігравати суттєву роль у різних клітинних про-
цесах. У огляді наводяться приклади різних потен-
ційних функцій ізоформ того ж самого білка, які 
кодуються різними генами. Молекулярне підґрунтя, 
що може забезпечувати існування такої різниці 
функцій у високогомологічних білкових ізоформ 
обговорюється на прикладі останніх досягнень у 
вивченні ізоформ фактора елонгації трансляції 1A 
(eEF1A).

К л юч ов і  с л ов а: білкові ізоформи, еукаріотична 
трансляція, eEF1A
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Изоформы белков: Происхождение структура 
и функции

А. В. Новосильная

Многие белки в организме млекопитающих существу-
ет в виде нескольких изоформ. Эти изоформы кодиру-
ются разными генами или являются продуктами аль-
тернативного сплайсинга одного и того же гена. 
Несмотря на быстрый инструментальный прогресс в 
идентификации изоформ, причины их существования 
и специфические функции в большинстве случаев 
остаются точно неизвестными. В последнее время 
внимание исследователей в основном сосредоточено 
на сплайсированных изоформах, в то время как разно-

генные белкоые изоформы могут исполнять суще-
ственную роль в разных клеточных процессах. В об-
зоре приводятся примеры разных потенциальных 
функций изоформ одного и того же белка, кодируемых 
разными генами. Молекулярные основы существова-
ния такой функциональной разницы высокогомоло-
гичных белковых изоформ обсуждаются на примере 
последних достижений в изучении изоформ фактора 
элонгации трансляции 1A (eEF1A).

К л юч е в ы е  с л ов а: белквые изоформы, эукарио-
тическая трансляция, eEF1A
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