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Aim. Comparative analysis of six state-of-the-art nuclear localization signal (NLS) prediction
methods (PSORT II, NucPred, cNLSMapper, NLStradamus, NucImport and seqNLS).
Methods. Each program was tested for correct predictions using a dataset of 155 experimen-
tally determined NLSs and for false-positives using a dataset of 155 transmembrane proteins,
which putatively lack NLS. Results. The most suitable NLS predictors wer fond to be NucPred,
NLStradamus and seqNLS; these programs provide the maximum rate of correct to wrong
predictions among the tested programs. However, the best results obtained by these programs
were only ~45 % of the correct predictions. Conclusion. The identification of novel NLSs by
predictors still requires experimental verification.
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Introduction

The nuclear envelope separates the nucleus
from the cytoplasm and provides bi-direction-
al traffic via nuclear pore complexes [1, 2].
Small proteins (up to ~40 kDa) can freely
permeate the nuclear envelope [3, 4], whereas
the traffic of the larger proteins is an active
process that depends on the binding of short
stretches of amino acids referred to as nuclear

localization signals (NLSs) with special adap-
tor proteins, karyopherins [5].

The best-characterized NLSs are the classical
NLSs (cNLSs) [6], which are recognized by the
carrier protein karyopherin-o (importin-a) [7].
cNLSs include two types of signals: monopar-
tite NLSs having a single cluster of basic ami-
no acid residues and bipartite NLSs having two
clusters of basic amino acids separated by a
10—12 amino acid linker [6]. In addition to the
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cNLS, several alternative types of NLSs have
been characterized, including the PY-NLSs with
consensus sequence [basic/hydrophobic]-Xn-
[R/H/K]-X2-5-PY [8], the acidic M9 domain
of hnRNP A1 [9], the sequence KIPIK in yeast
transcription repressor Mata?2 [10], the complex
signals of U snRNPs [11], PTHrP domain [12],
IBB domain [13], and many others. Predomi-
nantly, these non-classical NLSs (ncNLSs) are
translocated into the nucleus via interaction with
karyopherin-f [14].

The identification of novel NLSs is still a
quite complicated and time-consuming task
for experimental biology. Developing methods
of computational biology predicting possible
variants of NLSs can significantly contribute
to progress in this field. Some predictor pro-
grams with different algorithms are available
to identify the putative NLS (Table). Recently,
it has been demonstrated that the information
about the protein localization, predicted with
the bioinformatic approaches using data from
protein databases, such as Protein Atlas,
UniProt, LocDB and Gene Ontology, does not
fully concur with the nuclear proteome
data [15]. Moreover, the NLS prediction can-

Table. Prediction programs used for NLS
identification

Predictor ‘Web address

PSORT II http://psort.hgc.jp/form2.html

NucPred https://www.sbc.su.se/~maccallr/
nucpred/
http://nls-mapper.iab.keio.ac.jp/cgi-

cNLSMapper bin/NLS_ Mapper form.cgi
http://www.moseslab.csb.utoronto.ca/

NLStradamus NLStradamus/
http://bioinf.scmb.uqg.edu.au:8080/

Nuclmport Nuclmport/

seqNLS http://mleg.cse.sc.edu/seqNLS/
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not completely guarantee the accurate identi-
fication of novel NLSs [16], which indicates
that the precision of prediction may be a major
factor limiting the effectiveness and rapidity
of the experimental NLS research. Here, we
analyzed six state-of-the-art NLS prediction
programs to detect the restrictions of NLS
prediction methods and find the most effective
method.

Materials and Methods

Datasets

We used 155 experimentally determined NLSs
from 128 human proteins from Uniprot data-
base (http://www.uniprot.org/). We only used
the proteins with manually annotated descrip-
tions. To provide high protein diversity, we
excluded the closely related proteins (identity
between amino acid sequences is more than
65 %) in our dataset (available on request from
the corresponding author). According to the
published data, known cNLS could be de-
scribed by the following amino acid patterns:
K(R/K)X(R/K) [17], K(K/R)X(K/R) [18],
KR(R/X)K [19], KRRR [20], (P/R)
XXKR("DE)(K/R), KRX(W/F/Y)XXAF,
(R/P)XXKR(K/R)("DE), KR(K/R)R or
K(K/R)RK [21] for a monopartite cNLS, and
(K/R)(K/R)X 0.12(K/R)s, [22], KRX 1, KRRK
[19], KRX(.;n,K(K/R)(K/R) or KRXj,.
pK(K/R)X(K/R) [21] for a bipartite cNLS.
Comparison of NLSs from a created dataset
of experimental NLSs with these patterns dem-
onstrates that the majority of them (120 of 155)
may be classified as cNLSs.

In total, 155 random transmembrane pro-
teins from the Protein Data Bank of Trans-
membrane proteins (http://pdbtm.enzim.hu/)
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were selected for the control dataset. Two
extra datasets of transmembrane proteins (al-
pha type and beta type), each of the same size,
were created to validate the results obtained
for the first transmembrane protein dataset.

Prediction performance evaluation

To measure prediction performance, we used
the following criteria:

(1) True positive rate = Ntrue postitive/NexpNLS
(2) False positive rate = Niyjee positive/ NTmp
where Niye positive 18 the number of correct pre-
dictions in protein dataset with experimental
NLS (Neypnes)» thus

NexpNLS = Ntrue postitive + Nfalse negatives

MCC =

To be able to calculate a false positive rate,
we considered no more than one NLS per
transmembrane protein and ignored any NLS
outside the experimentally predicted ones in
our positive cohort of proteins. We determined
the correct prediction as a result that over-
lapped with experimental NLS by more than
three amino acid residues.

Niaise positive 18 the number of transmembrane
proteins with predicted NLS, Npyp 1s the total
number of transmembrane proteins in dataset, thus

NTMP = (Ntrue negative+ Nfalse positive)

The Matthews’ Correlation Coefficient
(MCC) [23] was also defined to measure the
correlation between prediction and observation:

NtruepositiveXNtrue negative”Nfalsa positive XNfalse negative

JNexpNLSX (Ntrue positi ue"l'!\'fa!se posftive) XN7ypX(Ntrue negatiue"‘”fa!se nagati ve)

Statistical analysis

The statistical analysis was performed by R
statistical computing.

Results and Discussion

An approach

We compared the prediction performance of the
following six programs: PSORT II [24], NucPred
[25], cNLSMapper [20], NLStradamus [26],
Nuclmport [27] and seqNLS [28] (Table). The
number of correct predictions and the rate of
false negative results were evaluated using the
dataset of proteins with experimental NLSs.
However, the amount of false positive predic-
tions and true negative values were calculated
based on a transmembrane protein dataset

(155 proteins) suggesting that transmembrane
proteins do not contain any NLSs. For equaliza-
tion of true positive and false positive results,
we considered the prediction of multiple NLSs
within one transmembrane protein as one pre-
dicted NLS. Validation of the datasets of trans-
membrane proteins with two extra datasets of
alpha and beta types of transmembrane proteins
demonstrated the similar results for all predictors
(data not shown); thus, the first dataset of 155
random transmembrane proteins could be ap-
plied as a negative control.

Search for optimal program operation
modes

Algorithms of seqNLS, cNLSMapper and
NLStradamus have a cut-off score option for
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Fig. 1. Evaluation of the prediction performance of different NLS predictors (True Positive Rate versus False Positive
Rate). Different cut-off scores are labeled for seqNLS, cNLS Mapper and NLStradamus as well as six types of training
models for NucImport.
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their prediction results. Based on this function,
we obtained the ROC-curve to evaluate the
True Positive Rate and False Positive Rate at
different prediction cut-off scores (Fig. 1). The
NLStradamus has not only a cut-off score op-
tion but also the following three different pre-
diction algorithms: simple two-state static or
dynamic Hidden Markov Models (HMM) al-
gorithms and a four-state static HMM algo-
rithm. The ROC-curves were evaluated for
each of these algorithms. For other predictors
(NucPred, PSORT II and NucImport), only one
value of the true positive to false positive re-
sults ratio was obtained (Fig. 1). The output
of NucPred provides the colored query se-
quence from blue (small probability of nucle-
ar localization) to red (high probability of
nuclear localization). In the case of prediction
with strict conditions (colored from orange and
red), only 18 % of experimental NLSs were
correctly predicted (data not shown). For this
reason, the prediction performance criteria of
NucPred were evaluated with less strict condi-
tions (colored from green to red) with an in-
crease in the numbers of correct predictions
(43 %). NucImport has six training models as
well as the parameter “name of species”
(mouse or yeast) that can be used for predic-
tions. We tested Nuclmport at each of the six
models, but only with the “mouse” parameter
as the “name of species” because it was more
related to our dataset of human proteins.

Comparison of the predictor programs

Figure 1 shows the prediction results for the
six considered computational approaches.
ROC-curve comparison revealed that a lower
cut-off score provided the maximum false pos-
itive results as well as the correct predictions

of experimental NLS. At the points with lower
cut-off scores, the number of correct predic-
tions was approximately equal to the number
of false predictions. However, the higher cut-
off scores allow for a more than 4-fold correct
prediction to the false positive ratio in the best
cases for NLStradamus. Among six evaluated
programs NucPred, NLStradamus (at cut-off
scores of 0.5—1) and seqNLS service (at cut-off
scores of 0.8—0.86) showed the best prediction
achievements. Additionally, the evaluation of
the prediction performance for each NLStrada-
mus HMMs did not show significant differ-
ences between them at the cut-off score from
0.5 to 1 (Fig. 1). PSORT II can be compared
with the NLStradamus at cut-off score of 0.2
(Fig. 1). At the all range of cut-off scores
cNLSMapper provided less true positive and
more false positive predictions than NLStrada-
mus and seqNLS. Only at the strongest cut-off
score (7.0) prediction achievements of ¢cNLS-
Mapper were similar to NLStradamus (Fig. 1).
In the case of Nuclmport, the rate of correct
predictions was the same for all six models, but
the minimum of the false positive results was
calculated for model 6 (Fig. 1). Nevertheless,
the best NucImport model 6 provided an equal
ratio of correct and incorrect predictions, which
was the worse prediction achievement among
the estimated programs.

To evaluate the correlation between predic-
tion and observation, the Matthews’ Correlation
Coefficient (MCC) [23] was calculated for
each predictor at its best settings (cut-off score,
prediction model). A coefficient of +1 repre-
sented a perfect prediction, 0 indicated a result
no better than the random result and —1 indi-
cated total disagreement between prediction
and observation. The highest MCC (~0.3) was
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Fig. 2. Calculated Matthews’ Correlation Coefficient.
The best values are presented for NucPred, cNLSMap-
per, seqNLS and NLStradamus.

obtained for NucPred, seqNLS (cut-off score
0.8-0.86) and NLStradamus (cut-off score 0.5),
when the best values of cNLSMapper and
PSORT II were also close (0.28 and 0.2 cor-
respondingly). According to MCC, the best
prediction model of NucImport demonstrated
random prediction (Fig. 2). Variation in the
cut-off score of the predictors also influenced
MCC,; the decrease of the cut-off score led to
random results (MCC is near 0) (Fig. 3).

Conclusion

In this study, we estimated the prediction per-
formance of six NLS predictors using the fol-
lowing two types of datasets: human proteins
with experimentally identified NLS and trans-
membrane proteins. The best True Positive
Rate and False Positive Rate and the highest
MCC were obtained for NucPred, NLStradamus
(at cut-off scores of 0.5—1) and seqNLS service
(at cut-off scores of 0.8—0.86). The prediction
achievements of cNLS Mapper and PSORT II
were a little bit worse. Our data are in agree-
ment with Lin & Hu [28] who demonstrated
that the seqNLS was a better predictor than
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Fig. 3. Calculated Matthews’ Correlation Coefficient for
seqNLS at different cut-off scores.

cNLSMapper. However, our results indicated
that NLStradamus showed the same or even
better results than the seqNLS on our dataset
of human proteins. It should be stressed that
even at the highest True Positive Rate and
minimum False Positive Rate, the best pro-
grams (NucPred, NLStradamus, seqNLS) cor-
rectly identified only ~45 % of the experimen-
tal NLSs. Therefore, the identification of
novel NLS by predictors still requires experi-
mental verification.
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IopiBHsibHMIT aHAJI3 MeTOIIB NependadeHHs
curnaJiB sepHoi Jokasmizauii (NLS)

O. M. Jlucuuina, B. b. Cemsipcbkuii, €. B. 1lleBanb

Mera. [nentndikanis curaanis sepHoi tokanizarii (NLS)
B aMIHOKHCJIOTHIH TOCIIIZTOBHOCTI OUIKIB 32 JIOIIOMOT'0IO
EKCIIEPUMEHTAJIBbHUX METOJIIB 3aJIMIIAETHCS KOIITOBHUM
i TpuBanMc npouecoM. ToMy B oCTaHHIH Yac BEJUKY TO-
MYJISIPHICTh OTPUMAJIA KOMIT'FOTEPHI METOJIU ITPOTHO3Y-
BanHst NLS. Metoau. B nawiii crarti My mpoBejH Io-
PIBHSUTBHHIA aHAaJI3 TOCTOBIPHOCTI MporHo3yBaHHs NLS
mectu pizHuX mporpaM (PSORT II, NucPred, cNLSMapper,
NLStradamus, Nuclmport Ta SeqNLS). st KoKHOTO
anropuT™a OyJIo OIliHEHa OIS iCTHHHO IMTO3UTUBHUX IIPO-
THO3IB Ha BHOIPKH 3 155 ekcriepuMEeHTaIbHO BUSHAYCHHX
NLS 3 128 OiKiB JIFOAMHH, a TAKOXK YACTKY TTOMIJIKOBUX
roztifi yBuOipui 3 155 TpaHcMeMOpaHHUX OLIKIB JIFOANHY,
SIKi, SIK BUITHO, 11030aBieni NLS. Pesynsrarn. Haitoinbury
KUIBKICTh BipHOMporHozoBanux NLS npu HaiiMeHmii
YacTIi XMOHOIIO3UTUBHI Pe3yJIbTariB OyJI0 OTPUMAHO JIJIst
Tprox mporpam: NucPred, NLStradamus Ta seqNLS.
BucHoBkn. OHak HaBiTh IPH HAOUIBIIIA CTYIICHI J0-
CTOBIPHOCTI J1aHi aJITOPUTMH IIPOTHO3YIOTH BIpHO HE OiTh-
me 45 % ekcriepuMeHTanbHO BU3HadeHnx NLS, To6to

154

BHKOPHUCTAHHS OyIb-SKHX aJIFOPUTMIB IPOTHO3YBaHHS
NLS BuMarae eKcriepuMeHTaIbHOT IEPEBIPKU OTPUMaHHUX
pe3yIIBTaTIB.

KnamodoBi cioBa: curaan smepHoi Tokati3arii; mepes-
OauyeHHs.

CpaBHHUTEIbHBIH aHAJIU3 METOA0B MpeACKA3aHUS
CHTHAJIOB siiepHO# Jokaauzauuu (NLS)

O. M. Jlucunsiza, B. b. Cemnapckuii, E. B. IlleBans

Hens. nenTndukanms CUrHaioB sIepHOH JIOKaIU3aluK
(NLS) B aMHMHOKHCIIOTHOM TIOCIIEIOBATEIbHOCTH OeITka
DKCIIEPUMEHTAIBHBIMU METOJIJAMU OCTAeTCsl IOPOrOCTOsI-
UM | JJONTUM TiporieccoM. IToaToMy B mocnesiHee Bpems
OOJIBIIIYIO MOMYIIIPHOCTH TOIYYHIIA KOMITBIOTEPHBIE METO-
nel ipenckazanus NLS. Meroabl. B gaHHOI cTarbe Mbl
TIPOBEJH CPAaBHUTEIBHBIN aHAJIM3 IOCTOBEPHOCTH MPE/ICKa-
3aaus NLS mectn pasmruaasix nporpamm (PSORT 11,
NucPred, cNLSMapper, NLStradamus, Nuclmport u
SeqgNLS). Jlnst kakaoro alropuTMa Obliia OIleHeHa IOt
HCTUHHO TIOJIOXKUTENBHBIX MPEICKa3aHUi Ha BBIOOPKE M3
155 skenepumMenTansHo onpeneneHHsix NLS u3 128 yeno-
BEUECKIX OCJIKOB, a TaKKe JOJSI JIOKHOIIOJIOKHUTEIBHBIX
MpeCKa3aHuil Ha BBIOOpKE M3 155 TpaHcMeMOpaHHBIX
OCJIKOB YeJIOBEKa, KOTOPBIE, ITPEAIIOJIOKUTENILHO, JIUIICHBI
NLS. Pe3yasrarbl. HanOompiiee KOMMIecTBO MPaBIITEHO
nperckazaHHbIx NLS npu HarMeHslIel fo51e JI0XKHOIIONO0-
JKUTEJIbHBIX PE3YNBTaTOB OBUIO TOIYYEHO I TPEX Ipo-
rpamMm: NucPred, NLStradamus u seqNLS. BbiBoasl.
OnHako Aaxe MpH HAHOOJbIIEH CTENeHN JJOCTOBEPHOCTH
JTAHHBIE ATOPUTMBI PEACKA3BIBAIOT MPABWILHO He Oortee
45 % sxcnepuMeHTalbHO onpeneneHHbx NLS, Te. ucnomns-
30BaHHUE JTFOOBIX AJITOPUTMOB Tipeackasanus NLS tpebyer
SKCHEPUMEHTAILHON IPOBEPKH HOITy9aEMbIX PE3YIIBTATOB.

KiaouyeBble cJ10Ba: curai SI,Z[epHOﬁ JIOKaJIN3aIluu,
MpeacKasaHue.
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