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Here we review literature data on impact of microsatellite repeats on DNA and chromatin structure and the 
results of studies on association between the length of microsatellite repeats and predisposition to pathologies. 
The DNA secondary structure is modified in microsatellite sites, the repeats favour formation of Z-DNA, 
hairpins, triplexes and quadruplexes. The chromatin structure and chromatin loop organization are also modi-
fied in microsatellite sites. The data of association studies are classified according to the localization of the 
microsatellite: in the gene promoter, in exon 1 part coding the signal sequence, in the gene introns, coding area s 
and 3’-UTRs. 

K e y w o r d s: microsatellite repeats; chromatin, human diseases; promoter; intron; exon.

Microsatellites (MS) are repeating sequences of 2-6 
base pairs of DNA distributed throughout the genome 
[1] and widely used as molecular markers in genetics, 
for kinship, population and other studies. Variability 
of the microsatellites forms a potent tool for individu-
al characterization of genomes. The microsatellite re-
peats are able to mutagenize the genomes of humans 
and are therefore poised to dynamically alter the hu-
man genomic landscape across generations [2].

Microsatellites remain highly informative and 
useful measures of the genomic variation for linkage 
and association studies, as microsatellites have a 
greater allelic diversity than biallelic SNPs. A single-
step expansion or contraction of the tandem repeat 
on the background of ancestral SNP haplotypes can 
break up common haplotypes, leading to a greater 
haplotype diversity [3].

Although mostly used as structural genetical mark-
ers microsatellites perform several functions in ge-

nome which are still far from being completely under-
stood. Peculiarities of the DNA and cell nucleus struc-
ture in microsatellite areas will be analysed first. 

DNA secondary structure
Repeating short sequences in the microsatellites en-
able the formation of altered secondary structure of 
the DNA molecule. Types of the altered secondary 
structure are graphically presented in Fig. 1. The for-
mation of altered secondary structures like hairpins, 
cruciform structures, quadruplexes and triplexes is 
considered to be the main mechanism for passage of 
the “length threshold” in triplet expansion disea-
ses [4].

Z-DNA. Several dinucleotide repeats are able to 
undergo transitions from B-DNA to Z-DNA via in-
termediate forms [5]. The GAC trinucleotide in car-
tilage oligomeric matrix protein normally should 
contain five repeats; expansion by one repeat causes 
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multiple epiphyseal dysplasia, whereas expansion 
by two repeats or, remarkably, deletion of one repeat 
causes pseudoachondroplasia. The repeats can form 
Z-DNA and three other altered secondary struc-
tures [6]. Left-handed Z-DNA is formed from 
d(GT)17 and d(CG)17 repeats under the topological 
tension of negative supercoiling and enables the in-
teraction of these microsatellites with intermediate 
filament proteins [7]. Ability to form Z-DNA struc-
tures is crucial for the interactions of binding pro-
teins like human editing enzyme ADAR1 with 
DNA [8]. Expanding CGG runs, responsible for the 
development of fragile X chromosome syndrome, 
adopt a left-handed Z-DNA structure. It is supposed 
that Z-DNA may be formed by long, expanded CGG 
stretches that become hypermethylated; this would 
inhibit transcription resulting in a disease [9]. The 
formation of Z-DNA conformation by CCG repeats 
is facilitated by Al ion binding, concentration of 
these ions increased in the patients [10]. Z-DNA and 
cruciform structures are formed also by CTG·CAG 
repeats of the myotonic dystrophy locus [11]. The 

temporal formation of left-handed helix Z-DNA 
might be a cause of the increased sensitivity of mic-
rosatellites to the chemical mutagens [12].

Hairpins. Trinucleotide repeat expansion is the 
cause for many known human congenital neurologi-
cal and muscular disorders like Huntington’s dis-
ease, fragile X syndrome, and Friedreich’s ataxia. 
The stable secondary hairpin structures formed by 
trinucleotide repeat may trigger fork stalling during 
replication; causing DNA polymerase slippage and 
trinucleotide repeat expansion. Thus, the hairpin for-
mation appears to be a main step in pathogenesis of 
these diseases. The formation of hairpins by trinu-
cleotide microsatellites was proven experimentally 
in biophysical studies; it was revealed that CGG re-
peats form intrastrand hairpins consisting of mis-
matched base pairs that promote primer–template 
slippage during DNA replication, these sites are fa-
vourable for binding DNA intercalating drugs like 
actinomycin D [13]. The hairpins formed by the 
short intronic repeats enable the formation of the cir-
cular RNAs, necessary for mRNA processing [14]. 

The hairpins formed by the compound microsatel-
lites consisting of two or more individual microsa-
tellites are considered to be hot-spots for recombina-
tion in plant viruses [15]. Stable secondary hairpin 
structures resulting in trinucleotide repeat expansion 
causing DNA polymerase slippage and trinucleotide 
expansion are removed by special helicases aimed at 
resolving theses hairpins [16]. The (CAG)4 repeat 
connected with Huntington’s disease forms stable 
hairpins, unlike the related (CGA)4 which adopts 
several conformations in solution [17]. In the case of 
the human fragile X mental retardation 1 gene 
(FMR1; HGNC:3775), a (CGG)n trinucleotide can 
cause either fragile X syndrome or fragile 
X-associated tremor/ataxia syndrome (FXTAS) de-
pending on the number of repeats formation of hair-
pins and R-loops during transcription of the repeats 
that is considered to be the cause of altered gene ex-
pression in these diseases [18]. On the other hand, 
hairpins in the expanded trinucleotides can serve as 
a target for specially designed alkylating drugs [19]. 
Hairpins are possibly formed also by other types of 

Fig. 1. Possible modifications of the DNA higher order struc-
tures formed by microsatellites (according Smith, 2008).
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microsatellites, as bioinformatics analysis of possi-
ble influence of the repeat number of several micro-
satellite alleles in the intron 6 of the human protea-
some core particle PSMA6 gene and four other 
micro satellites localized upstream in human 
Chromosome 14q13.2 revealed that in two of the 
studied microsatellites such changes were quite pos-
sible. In the HSMS602 marker, a increase in the 
CAA repeat number up to 10 triggers the changes in 
DNA secondary structure different from that of 
(CAA)7 and (CAA)8 alleles. In the HSMS006 mic-
rosatellite an increase in the TG repeat number from 
17 to 18 is followed by a change in the hairpin struc-
ture [20]. Microsatellites identified in the vimentin-
binding DNA also are capable to form hairpins [21]. 

Triplex structures. The triple-helix formation is 
believed to be important in numerous fundamental 
genetic processes like regulation of transcription and 
replication, genetic recombination of homologous 
sequences and chromosome folding. The short re-
peated sequences like nonamer d(GCGAATTCG) 
and decamer d(GGCCAATTGG) form triplex struc-
tures that could be crystallized and subjected to 
X-ray diffraction study [22]. The triplexes formed 
by microsatellites d(A(GA)20 (TC)20T) and 
d(GA)20 and d(TC)20 interact with the intermediate 
filament proteins via partially unwound struc-
tures [23]. The highly repeated Drosophila melano-
gaster AAGAGAG satellite sequence present in cen-
tromeres of all chromosomes of the fly forms a py-
rimidine triple helix containing T_A-T and CCu_G-C 
base triplets, stabilized by copper ions in the amounts 
close to in vivo concentrations. Formation of the tri-
plex helices could be detected in vitro by means of 
infrared spectroscopy [24]; it is supposed that such 
structures are formed in centromeric areas of chro-
mosomes in living cells. Among human inherited 
diseases the triplex formation is well-documented 
for Friedreich’s ataxia (FRDA), the autosomal neu-
rodegenerative disorder where a large purine GAA 
repeat in the FXN gene, forming a triplex structure, 
is known to inhibit the expression of frataxin pro-
tein. A wide human genome scanning performed by 
Singh and Rajeswari [25, 26] revealed existence of 

numerous purine-rich microsatellite repeats in the 
genes related to brain function. It is supposed that 
inhibition of expression of these genes due to the tri-
plex formation is important in pathogenesis of au-
tism, Alzheimer’s disease, schizophrenia, epilepsy, 
mental retardation, Parkinson’s disease and brain 
tumours [25, 26]. Besides the triples structure, the 
FRDA GAA·TTC repeats are capable of forming 
various alternative structures, including a parallel 
GAA·TTC duplex in equilibrium with the antiparal-
lel Watson-Crick GAA·TTC duplex [27].

G-qundruplexes and I-motifs. The telomeric re-
peats situated in overhanging single-strand struc-
tures on telomeres can also form unusual structures. 
A guanine-rich repeats like H-Tel, formed by four 
consecutive repeats of the human telomeric se-
quence, d(AGGGTTAGGGTTAGGGTTAGGG), 
can assume different monomolecular G-quadruplex 
topologies depending on the type of cation present in 
solution and their concentration, the association pro-
cess is affected by partially unfolded antiparallel 
structures [28]. Indeed, these repeats can form se ve-
ral types of unusual structures including G-triplex, 
misfolded G-quadruplex and typical G-quadruplexes, 
the formation of different structures depends on 
number of repeats and length of the loops [29]. The 
telomere-targeted drugs are selected on the basis of 
binding to G-quadruplexes [30].

The G- quadruplexes are formed also in double 
stranded DNA. The G4C2 hexanucleotide repeat ex-
pansion, located in the first intron of the C9ORF72 
gene, represents a major genetic hallmark of amyo-
trophic lateral sclerosis and frontotemporal lobar de-
generation. Using nuclear magnetic resonance and 
circular dichroism spectroscopy it was shown that 
DNA G4C2 with varying number of repeats d(G4C2)
n forms planar guanine quartets characteristic of 
G-quadruplexes, the latter are non-canonical DNA 
structures stabilized with sodium or potassium cat-
ions. These DNA G-quadruplexes can be formed in-
ter- and intra-molecularly in either parallel or anti-
parallel orientation, based on d(G4C2) sequence 
length. An important role in pathogenesis of amyo-
trophic lateral sclerosis and frontotemporal lobar de-
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generation is ascribed to structural changes in DNA 
linked to a number of the repeats [31]. The topology 
study of a G-quadruplex formed by d(G4C2)4, 
which was performed by another group showed that 
it favoured a monomeric fold and formed a chair-
type G-quadruplex with a four-layer antiparallel 
G-tetra core and three edgewise loops, which is dis-
tinct from the known structures of chair-type 
G-quadruplexes. These structures lead to abortive 
transcripts [32]. Interestingly, the reverse DNA 
strand, consisting of an extremely C-rich (C4G2)n 
sequence also forms unusual structures, so-called I 
motifs. I-motifs consist of two parallel duplexes in a 
head to tail orientation, the strands of which are held 
together by hemiprotonated C-C pairs; these can be 
formed intra- or inter-molecularly [33]. The recently 
published crystal structure of a CCG repeat sequence 
shows that two dT(CCG)3A strands can associate to 
form a tetraplex structure with an I-motif core con-
taining four C:C(+) pairs flanked by two G:G homo-
purine base pairs as a structural motif. The tetraplex 
core is attached to a short parallel-stranded duplex. 
Each hairpin itself contains a central CCG loop in 
which the nucleotides are flipped out and stabilized 
by stacking interactions [34]. Plant retrotransposon 
long terminal repeats which share common features 
with microsatellites are also capable of forming 
G-qudruplexes [35]. The c-myc gene promoter con-
tains the 27-nt purine-rich strand (Pu27) formed by 
six guanine stretches, five of which contain three or 
four guanines per stretch, thus meeting definition of 
a microsatellite, which can form G-quadruplexes 
[36]. The formation of hairpin and tetrahelical struc-
tures by a d(CGG) trinucleotide repeat sequence is 
thought to cause expansion of this sequence and to 
engender fragile X syndrome. It was shown that hu-
man Werner syndrome DNA helicase unwinds the 
G-quadruplex structures of d(CGG)7 [37]. Among 
numerous repeated sequences interacting with vi-
mentin in mouse cells via the G-quadruplex struc-
tures several share some features with microsatel-
lites [38]. 

Chromatin structure. In triplet-expanding the 
expanded microsatellites are mostly hypermethyl-

ated and hypoacetylated, indicating heterochromatic 
nature of their regions [39]. The expanded CTG·CAG 
repeat tracts are among the strongest of known his-
tone-binding sequence elements, and cause drastic 
alterations in the local chromatin structure. These 
sequences adopt tightly condensed heterochromatin 
configurations in vivo that mediate the gene-silen-
cing effects underlying the pathogenesis of both 
FRDA and FRAXA. The attenuation of gene expres-
sion by the expanded GAA·TTC repeats is associa-
ted with the hypoacetylation of histones H3 and 
H4 [40]. One of the causes of transcriptional defi-
ciency in Friedreich ataxia is an extension of repres-
sive chromatin from the expanded GAA in intron 1 
to the upstream regions of the FXN gene, involving 
the FXN transcriptional start site. The major FXN 
transcriptional start site, is normally in a nucleo-
some-depleted region, however it is rendered inac-
cessible by altered nucleosome positioning in 
FRDA [41]. However the GAA repeat itself should 
be depleted of nucleosomes due to a poor ability to 
form complexes with histones [42]. An inability to 
form nucleosomes arises from the formation of du-
plex and triplex structures in the repeat [43]. On the 
contrary, the CAG·CTG repeats expanded in the 
Huntington disease form nucleosomes effectively. In 
case the repeat number is normal, the formation of 
chromatin is regulated by adjacent htt gene sequen-
ces, the control is lost when the repeat number ex-
ceeds the normal size [44]. The human MAR 1-68 
containing AT repeats is nucleosome-free [45]. 

Nuclear matrix attachment and chromatin 
loop organization. Microsatellites are known to 
form the nuclear matrix anchorage sites [45, 46] es-
pecially the tissue specific matrix attachment 
sites [47]. In Friedreich’s ataxia, the expanded GAA 
repeats in intron 1 increase the FXN localization at 
the nuclear lamina, a structural component of the 
nuclear matrix [48]. In fascioscapulohumeral mus-
cular dystrophy (FSHD) a partial deletion of integral 
numbers of D4Z4 repeats leads to the weakening of 
DNA and nuclear matrix bonds, and loss of one ma-
trix attachment site, strength of DNA-matrix interac-
tions depends also on the epigenetic factors [49, 50]. 
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Interestingly, the GAA repeat-containing RNAs, a 
recently described class of non-coding RNAs, tran-
scribed from complementary microsatellites are lo-
calized within the nuclear matrix [51]. 

Enhancers and silencers. Microsatellites appear 
to be the important components of insulators [52], 
silencers [45, 53] and enhancers [54]. In the 
Drosophila GATA simple sequence, the repeats 
function as enhancer blocker boundaries [55]. 

Thus, microsatellites form peculiar structures at 
the DNA and chromatin level, which inevitably 
should modify gene functions and lead to the patho-
logy development in some cases. In the following 
part of the review we shall analyse an association of 
microsatellite polymorphisms with diseases depen-
ding on localization of the repeats in the genes. 
Triplet expansion diseases and microsatellite insta-
bility in tumours will not be analysed, as these ques-
tions are intensively reviewed elsewhere [56, 57]. 

Promoter microsatellites. The number of GA re-
peats in promoter of the SOX5, MECOM, and 
GABRA3 genes determines transcriptional activity of 
these genes, similar repeats were found in promoters 
of numerous other human genes [58, 59]. The rodent 
Sry gene contains a CAG microsatellite, which could 
accelerate evolution in the taxon [60]. An ability of 
promoter microsatellites to form unusual secondary 
structures like Z-DNA and H-DNA is crucial for tran-
scription control performed by these repeats [61]; mi-
crosatellites near the transcription start are conserved 
evolutionary [62]. A polymorphic regulatory Z-DNA-
forming microsatellite of a (GT/AC)n repeat localized 
in the promoter of the human solute carrier family 11 
member 1 (SLC11A1) gene determines the predisposi-
tion to infectious inflammatory diseases and cancer. 
The length and composition of microsatellite repeats 
influence the chromatin remodelling and accessibility 
by transcription factors [63]. For example, a polymor-
phic TG dinucleotide repeat at -68 bp in the promoter 
of the thyrotropin-releasing hormone receptor (TRHR) 
gene is associated with essential hypertension. A 
shorter allele of this repeat manifests a higher affinity 
to transcription factors compared to the longer allele 
[64]. The hypoxia-inducible Factor 1 (HIF-1) regu-

lates allelic variation in SLC11A1 expression by bind-
ing directly to the microsatellite during the macro-
phage activation [65]. Z-DNA conformational se-
quence structures within the promoter of the nNOS 
gene have the potential to enhance or repress gene 
promoter activity affecting endogenous NO synthesis 
and potentially result in diseased states [66]. The 
Z-DNA sequence element Z1 [(CA)10(CG)8] in the 
promoter region in the rat nucleolin gene inhibits the 
promoter activity independently of location and ori-
entation [67].

The most common allele of the MS marker in 
STAT4, the STAT4-MS1-254 allele, located in the 5′ 
flanking region of the gene is significantly associat-
ed with sarcoidosis [68]. The length changes of mic-
rosatellites within promoters and other cis-regulato-
ry regions can also change level of gene expression; 
they are linked to abundant variations in cis-regula-
tory control regions in the human genome [69]. For 
example, a CA-repeat microsatellite in insulin-like 
growth factor 1 (IGF1) promoter is associated with 
the level of this growth factor. It turned out that in-
tensity of the gene transcription is regulated by the 
interaction of several SNPs and the microsatellite 
generating haplotypes with lower or higher level of 
the gene transcription [70]. The promoter microsa-
tellites tend to be G/C rich; these are often found at 
the start of the genes and are probably associated 
with regulatory elements as CpG islands, 
G-quadruplexes (G4) and untranslated regulatory re-
gions. Many promoter microsatellites have the po-
tential to affect human phenotypes by generating 
mutations in regulatory elements, which may ulti-
mately result in disease [71]. A CpG-CA repeat wi-
thin the human endothelin-converting enzyme-1 
(ECE-1) promoter is highly polymorphic, harbours 
transcriptional start sites, it is able to recruit the tran-
scription factors, poly(ADP)ribose polymerase-1 
and splicing factors, it is functional regarding haplo-
type-specific promoter activity. Overall CpG-CA re-
peat composition of Alzheimer disease patients and 
controls is distinct [72]. A length polymorphism of 
GT repeats in the promoter region of the human 
heme oxygenase-1 (HO-1) gene modulates its gene 
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transcription [73]. A number of studies have associ-
ated the human HO-1 gene promoter polymorphisms 
with a risk of vascular diseases [74]. The persons 
carrying longer (GT)n repeats in the HMOX1 gene 
(L allele) promoter may have a higher risk of type 2 
diabetes [75]. In functional analyses, the HO-1 ex-
pression level was significantly reduced in the per-
sons with impaired glucose regulation and T2DM 
carrying the L/L (GT)n genotype compared to the 
persons with the S/S genotype [76]. The same mic-
rosatellite is associated with susceptibility to cardio-
vascular complications of the disease. The patients 
with longer lengths of GT repeats in the heme oxy-
genase-1 gene promoter exhibit a higher inflamma-
tion and oxidative stress. These patients have a high-
er risk of the long-term cardiovascular events and 
mortality [77]. A short allele of the same microsatel-
lite might be associated with the abdominal aortic 
aneurysm [78]. The long (GT)n repeats in the micro-
satellite polymorphism region of the HMOX1 gene, 
are associated with the symptomatic mala ria [79].

The aldose reductase (AKR1B1) gene promoter 
harbours a (CA)n microsatellite significantly associ-
ated with diabetic retinopathy. The z-2 microsatellite 
was found to confer risk in type 1 and type 2 diabetes 
and z+2 to confer the protection against diabetic ret-
inopathy in type 2 diabetes regardless of ethnicity 
[80, 81]. The haplotypes comprising S allele of 
(CCTTT)n repeat in the promoter of NOS2 gene are 
associated with both hypertension and responsive-
ness to antihypertensive drug therapy [82]. The same 
microsatellite is associated also with diabetic reti-
nopathy, as well as the (GT)n promoter repeat in the 
tumor necrosis factor β (TNFB) gene [81]. 

The promoter microsatellites might be associated 
also with mental problems, the promoter TA micro-
satellite repeat in the estrogen receptor alpha gene 
(ESR1) is significantly associated with postpartum 
depression [83]. The arginine vasopressin receptor 
1A gene (AVPR1A) is widely expressed in the brain 
and is considered to be a key receptor for the regula-
tion of social behavior. The 5’-flanking region poly-
morphisms in the human AVPR1A, RS3 and RS1 
genes show differences in the relative promoter ac-

tivity by the length. Shorter repeat alleles of RS1 and 
RS3 decreased a relative promoter activity in the hu-
man neuroblastoma cell line SH-SY5Y. The short 
allele of RS1 is associated with autism [84].

The CYP11A1 promoter microsatellite (TTTA)n re-
peat polymorphisms may contribute to increasing sus-
ceptibility to the polycystic ovary syndrome risk [85].

5’-UTR microsatellites. Upregulation of ADAM-
12, a member of the multifunctional ADAM family 
of proteins, is linked to cancer, arthritis and cardiac 
hypertrophy. The gene expression is regulated by a 
negative regulatory element containing a stretch of 
dinucleotide-repeat sequence that is able to adopt a 
Z-DNA conformation and allows the binding of reg-
ulatory protein [86]. 

Signal sequence microsatellites. Some microsat-
ellites are localized in the translated gene areas. 
Carnosinase contains a D18S880 microsatellite – a 
leucine triplet repeat in its signal sequence, polymor-
phism of this site, especially five trinucleotide repeat 
homozygote, is associated with diabetic nephropa-
thy susceptibility [87]. The human signal transducer 
and activator of the transcription 6 (STAT6) gene 
represents one of the most promising candidate 
genes for asthma and other inflammatory diseases in 
the chromosomal region 12q13-q24. The gene exon 
1 contains a GT repeat upstream the first methionine 
codon. Allele A4 of the GT repeat polymorphism is 
associated with an increase in eosinophil cell 
count [88]. The genotype of (GT)13/15 repeat allele 
heterozygosity is significantly associated with aller-
gic subjects [89].

Microsatellites of coding regions. Besides tri-
nucleotide expansion diseases characterized mostly 
by polyglutamine tracts (poly-Q), which cannot be 
analysed here due to the space limitations, an inter-
esting trinucleotide repeat was identified in the 
MIC-A gene. The exon 5 microsatellite polymor-
phism of the MIC-A gene consists of five alleles 
based on the number of GCT triplet repeat units (al-
leles A4, A5, A6, and A9) and the presence of an 
additional nucleotide insertion (allele A5.1). The 
CGT repeats regulate the number of Ala residues in 
the protein, the A5.1 leads to a frameshift mutation. 
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The exon encodes membrane-binding domain of the 
protein [90]. The microsatellite alleles are associated 
with Addison’s disease [90], type 1 diabetes mellitus 
[91, 92, 93]. Some alleles are protective against ju-
venile idiopathic arthritis [94]. The variations of 
CAG (Gln) repeats in the androgen receptor gene in 
physiological limits can alter certain physiological 
parameters. A shorter AR CAG is associated with 
low HDL-C and testosterone [95].

Intronic microsatellites. The microsatellites 
within introns also influence a phenotype, through 
the means that are not currently understood, this is 
the cause of numerous associations of the microsat-
ellite repeat polymorphisms with the human disea-
ses. For example, the GAA triplet expansion in the 
first intron of the X25 gene appears to interfere with 
transcription, and causes Friedreich Ataxia [96]. The 
intronic (GT)n(GA)m microsatellite in the HLA-
DRB1 alleles can adopt several non-B conforma-
tions in vivo and binds a zinc-dependent regulatory 
protein [97]. The CT repeat in the first intron of the 
iNOS gene adopts triplex structure and binds the 
regulatory proteins PTBP1 and hnRNPK and regu-
lates the gene expression [98]. A repeat polymor-
phism in the fourth intron of the eNOS gene is linked 
to hypertension [99]. Subjects having more the CA 
repeats in the first intron of the type 2 
11β-hydroxysteroid dehydrogenase gene (HSD11B2) 
are susceptible to the developing abnormal glucose 
tolerance [100]. Three microsatellite loci (ATCC)n1, 
D1S1621, and (ATCC)n2 in the DISC1 gene show a 
significant association with schizophrenia. The mic-
rosatellites occur in intronic sequences in the vicini-
ty of a critical splice junction that gives rise to the 
expression of DISC1 isoforms [101]. 

The intronic microsatellite polymorphisms deter-
mine susceptibility to certain neoplasia. For exam-
ples, the tandem repeats in the first intron of the as-
paragine synthetase gene are linked to acute lym-
phoblastic leukemia [102]. The polymorphisms in 
the CT dinucleotide repeat in the intron 3 of the tran-
scription factor GATA3 gene are associated with the 
breast cancer risk, women who carry (CT)17 or 
(CT)18 alleles of the GATA3 gene are at a lower risk 

of developing breast cancer [103]. The polymorphic 
dinucleotide CA tandem repeat (ESR2_CA) is loca-
ted in the intron 5 of estrogen receptor gene 2. The 
gene ESR2 (14q23.2) is associated with the breast 
cancer risk in African women [104].The intronic 
D19S884 marker A7 allele of the fibrillin 3 gene is 
associated with the polycystic ovary syndrome [105]. 

The intronic microsatellites repeats are implicated 
in the pathogenic mechanisms of several autoim-
mune diseases. The SLC26A4 gene, involved in the 
genetic susceptibility of autoimmune thyroid dis-
ease, harbours two microsatellites in the introns 10 
and 20; longer alleles of these markers appear to be 
associated with Hashimoto thyroiditis [106]. 

Polymorphisms present in the first intron of IFN-γ 
may play an important role in the regulation of the 
immune response, which could have functional con-
sequences for gene transcription. The microsatellite 
encoding (CA)16 repeats was shown to be significant-
ly associated with the paucibacillary form of lepra 
compared to multibacillary patients[107]. The micro-
satellite marker IFNGR2-MS1 located in 50-upstream 
region of the interferon gamma receptor 2 gene 
(IFNGR2) shows significant association with tubercu-
losis [108]. The interleukin -4 gene intron 3 microsat-
ellite polymorphism determines the gene product and 
resistance to parasitic invasion [109]. 

One allele of D6S1276 microsatellite in the intron 
1 of the BMP5 gene is associated with osteoarthritis 
risk in women, two alleles are protective [110]. Our 
team has performed a study on the association of a 
group of microsatellites localized in the 14q13 locus 
[111, 112, 113].

3’ – UTR microsatellites. The microsatellites lo-
calized in the 3’-UTR regions may affect the final 
mRNA stability, the localization, the export from the 
nucleus and the translation efficiency. The androgen 
receptor CAG repeat polymorphism (AR CAG) af-
fects the receptor transcriptional activity (the shorter 
repeats the more sensitive AR) and is associated with 
androgenic parameters and obesity [95]. The con-
served regulatory sequences within 3’ UTRs and the 
specific elements binding to them enable the gene 
expression control at the posttranscriptional level 

http://en.wikipedia.org/wiki/Intron
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and all these processes reflect the actual state of the 
cell [114]. Shorter alleles of microsatellites in the 3’ 
flanking region of leptin gene, coding for a protein 
hormone, mainly synthesized in adipocytes, that reg-
ulates the food intake and energy expenditure of the 
body, are significantly associated with hypertension 
[115]. Reduced repeat lengths in the EGFR gene 3’-
UTR polyA repeat are linked with osteosarcomas 
[116]. Microasatellite in the anti-cytotoxic T lym-
phocyte antigen-4 (CTLA-4) gene (AT)n 3’UTR 104 
bp, 106 bp, 110 bp and 116 bp alleles were observed 
to be predisposing to recurrent miscarriage [117].

Remote and locus-specific microsatellites. In 
some cases, an association with the diseases is found 
for microsatellites localized far from the candidate 
genes. Microsatellites can determine activity of the 
upstream gene regulation elements like Locus 
Control Region of the Beta-globin gene domain. The 
(AT)8(N)12GT(AT)7 configuration of microsatellite 
found in the Hypersensitive site of the structure is 
associated with a special form of sickle cells – 
Tunisian βs chromosomes [118]. In some gene clus-
ters the changes in microsatellite structure drastical-
ly modify the transcription factor binding and gene 
switching [119]. The marker D12S96 is localized 
5.653 cM downstream the vitamin D receptor (VDR) 
gene. Despite such a long distance and obscure func-
tional relations, the statistically significant linkage 
disequilibrium was detected for the allele – 22 of lo-
cus D12S96 with osteoporosis [120]. In some cases, 
an association of microsatellites with candidate 
genes is not traced at all, as these are sooner locus 
than gene markers. 8p21-23 region microsatellites 
D8S136 and D8S520 are consistently and strongly 
related to prostate cancer, provide the example [121]. 
The locus was traced due to frequent loss of hetero-
zygosity in tumours, but not as a result of association 
studies. The D1S2726 microsatellite, located 30 kb 
from the KCNA3 gene, which encodes the voltage-
gated potassium channel Kv1.3, is associated with 
susceptibility to autoimmune pancreatitis [122].

Conclusion. We hope that all above facts would 
persuade a reader that association of the microsatel-
lite length with pathologies is a consequence of the 

structural and functional modification of the genome 
produced by changes in the repeat length. 
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Структурно-функціональне значення мікросателітних 
повторів ДНК

Т. Сьяксте, Н. Парамонова, Н. Сьяксте

Огляд узагальнює дані літератури про вплив мікросателітних 
повторів на структуру ДНК і хроматину та результати дослі-
джень щодо зв'язку між довжиною мікросателітних повторів і 

схильныстю до патологій. У мікросателітних сайтах змінюється 
вторинна структура ДНК, загальна структура і організація петлі 
хроматину; повтори сприяють утворенню Z-ДНК, шпильок, 
триплексів і квадруплексов. Дані досліджень по асоціаціям кла-
сифікують по локалізації мікросателітів: у промоторі гена, в об-
ласті першого екзона, що кодує сигнальну послідовність, в ін-
тронній т частини, та в кодуючий в 3'-UTR ділянках гена.

К л юч ов і  с л ов а: микросателітні повтори ДНК, хроматин, 
хвороби людини, промотор, інтрон, екзон

Структурно-функциональное значение 
микросателлитных повторов ДНК

Т. Сьяксте, Н. Парамонова, Н. Сьяксте

Обзор обобщает данные литературы о влиянии микросател-
литных повторов на ДНК и структуру хроматина и положи-
тельные результаты исследований связи между длиной микро-
сателлитных повторов и предрасположенности к патологиям. 
В микросателлитных сайтах изменяется вторичная структура 
ДНК, общая структура и организация петли хроматина; повто-
ры способствуют образованию Z-ДНК, шпилек, триплексов и 
квадруплексов. Данные исследований по ассоциациям класси-
фицируются по локализации микросателлитов: в промоторе 
гена, в области первого экзона кодирующей сигнальную по-
следовательность, в интронной части, в кодирующих и в 3'-
UTR областях гена.

К л юч е в ы е  с л ов а: микросателлитные повторы ДНК, хро-
матин, болезни человека, промотор, интрон, экзон
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