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Eukaryotic interphase chromatin is folded hierarchically. Mammalian chromosomes are partitioned into topo-
logically associating domains (TADs) whose interactions with each other drive the spatial segregation of the
bulk chromatin into A—compartment containing active genomic regions, and B—compartment harboring re-
pressed genomic loci and gene deserts. The internal structure of TADs is represented by CTCF/cohesin—medi-
ated loops. The specific local and large—scale spatial structure of chromosomes plays an important role in the
regulation of the genome functions. The recruiting of the genome loci to internal nuclear structures drives a
subset of long-range chromatin interactions. The nuclear lamina is found to be involved into chromatin spatial
positioning within the nucleus. The chromatin—nuclear lamina interactions are not rigid allowing for a substan-
tial reconfiguration of the genome topology in cell generations and during differentiation. Here, we review
some resent findings shedding light on the nature and spatial dynamics of the lamina—associated genomic re-

gions.
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Introduction

The entire nuclear space in mammals is substantially
compartmentalized [1]. Chromosomes occupy dis-
tinct territories, whose internal structure is spatially
organized at multiple levels. Local and long—range
contacts between genomic regions are driven by sto-
chastic motion of chromatin fiber, specific associa-
tions of functionally related gene loci, direct pro-
tein—protein interactions resulting in loop formation,
and by the co—occurrence of remote chromosomal
segments within nuclear bodies and specific nuclear
structures [2]. At the whole—chromosome level,
mammalian chromatin is partitioned into predomi-

nantly active and generally repressed compartments,
formed by long-range interactions of topologically
associating domains (TADs) whose formation, in
turn, appears to be driven by the looping between
CTCF/cohesin—occupied regions [3].

The nuclear lamina (NL) is the largest structure
inside the nucleus. The NL represents a fibrillary
protein layer adjacent to inner nuclear membrane
and composed of several types of lamins and lamin—
associated proteins. Components of the NL were
found to be directly bound to chromatin and chroma-
tin—associated regulatory factors. In mammals, about
30—40% of the genome interact with the nuclear
lamina [4]. Constitutive lamina—associated regions
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of the genome (LADs) are typically gene—poor and
AT-rich inactive genomic regions ranged between
0.1 and 10 Mb in size and are characterized by high
level of H3K9 mono—, di— and three—methylation
along with the Polycomb-associated repressive
mark H3K27me3 [4, 5]. A large cohort of studies
performed using fluorescence in situ hybridization
and various biochemical techniques have revealed
that the nuclear periphery in a vicinity of the NL rep-
resents generally inactive nuclear compartment and
accumulates gene loci undergoing transcriptional re-
pression during development and differentiation [6].
A number of reports on the role of the nuclear lamina
in the genome folding were published in last few
years. Here, we briefly review several recent ad-
vances in understanding the chromatin spatial orga-
nization and its relationships with the chromatin re-
cruiting to the nuclear lamina.

The overall scheme of the chromatin spatial
organization in mammals

Recent progress in the exploration of the animal ge-
nome spatial structure achieved using various high—
throughput 3C—based techniques such as 4C, 5C,
Hi—C and capture—C [7] has revealed a complex pat-
tern of local and long—distance spatial interactions
within the interphase chromatin, and the basic prin-
ciples of the genome folding were disclosed [1, 8].
At the whole—genome level, the spatial clustering of
small chromosomes and large chromosomes with
each other was observed in human cells [9] (Fig. 1A).
These data corroborate classical cytological obser-
vations and the results of fluorescence in situ hybrid-
ization showing that chromosomes occupy distinct,
largely non—overlapped chromosome territories
within the eukaryotic cell nucleus, and that small
gene—rich chromosomes are typically located within
the central part of the nucleus whereas large chromo-
somes are located at the nuclear periphery [10].

At the chromosomal level, the interphase chroma-
tin in mammals is partitioned into A and B chromatin
compartments [9] (Fig. 1B). The A—compartment is
formed by pairwise long-range (up to throughout
the entire chromosome) interactions of gene—dense
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highly transcribed regions enriched with a broad pat-
tern of active epigenetic marks. Interacting partners
could be single TADs (see below) or arrays of TADs
having a length up to dozens of megabases. In con-
trast, the B—compartment is formed by long-range
interactions of inactive parts of the genome and gene
deserts. The chromatin compartment profile is con-
siderably variable among different cell types. During
differentiation of the human embryonic stem cells
(ESC) a large reconfiguration of chromatin compart-
ments and an expansion of the B-compartment were
observed [11]. Genes that were upregulated upon
differentiation were preferentially transferred from
B to A compartment, whereas downregulated genes
predominantly changed the compartment from A to
B. Global reorganization of chromatin compart-
ments was also observed in senescent cells [12, 13].
Hence, the chromatin compartment profile reflects
the functional state of the genome.

Increase of a Hi—C map resolution to approxi-
mately 50 Kb has revealed the presence of self—in-
teracting regions 100—1000 Kb in length located side
by side along the chromosome and interacting with
each other relatively weak[ly] [14, 15] (Fig. 1C).
Such regions were initially called topologically as-
sociating domains (TADs), or contact domains
(CDs), and are commonly interpreted as chromatin
globules. TADs have a typical size of 100-1000 Kb
in mammals and about 50-200 Kb in Drosophila
[14, 16, 17]. Mammalian TAD boundaries are en-
riched with housekeeping and tRNA genes, SINE
repetitive elements and CTCF-binding sites [14]. In
Drosophila, TADs harbor predominantly repressed
genomic regions whereas TAD boundaries and in-
ter—-TADs contain active genes (predominantly
housekeeping) [17, 18]. TAD boundaries in mam-
mals possess prominent enhancer—blocking activity.
It has been shown that communication via chromatin
loop formation between enhancers and target pro-
moters typically occurs within the same TAD [19],
and TADs colocalize with the so—called “regulatory”
domains that delimit zones of enhancer influence
[20]. Thus, in terms of function, mammalian TADs
represent the transcription regulatory units of the ge-
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nome. Although TAD boundaries are critical genom-
ic elements preventing abnormal enhancer—promoter
communication [21], they do not completely insu-
late TADs from each other: contact frequency be-
tween adjacent TADs is only about 2 fold lower than
the intra—TAD contact frequency [1].

The further increase of the Hi—C maps resolution
up to 1 Kb allowed revealing the abundant presence
of CTCF-anchored chromatin loops forming the so—
called “loop domains” with a median size of 185 Kb
located inside the megabase-sized TADs [22]
(Fig. 1D). Approximately 10000 such loops were
found in the human genome. About 30% of these
loops bring the promoters and enhancers together, and
genes associated with the loops are expressed at sig-
nificantly higher level than the genes whose promot-
ers are not involved into looping interactions.
Interestingly, according to different estimations, 60—
90 % of loops [22, 23] are formed between conver-
gent CTCF binding sites that hints the possible mech-
anism of loop formation based on CTCF protein
structural features. The recently proposed model of
DNA loop extrusion successfully explains the ob-
served Hi—C data [24-26]. However, the molecular
machine that actually performs the extrusion (and
consequently provides enhancer—promoter communi-
cation) is currently not found. The main candidates
are RNA—polymerase II and the condensin complex
[26, 27]. Along with loop domains, the so—called “or-
dinary” domains were also observed. Despite the fact
[that] the formation of these domains could not be ex-
plained directly by loop extrusion, the indirect mecha-
nism could be suggested: the genomic region located
between two loop domains is spatially segregated
from them that may lead to the increased contact fre-
quency inside this region as compared to its contact
frequency with the flanking loop domains. Thus,
CTCF/cohesin—anchored loops represent the basic
level of the large—scale chromatin topology in mam-
mals and are directly involved into long-range tran-
scriptional regulation. Interestingly, CTCF—anchored
loops are not robustly detected in the Drosophila ge-
nome, and TAD boundaries in Drosophila are not
considerably enriched with CTCF binding sites [18].
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It denotes that mechanisms of TAD formation may be
different in mammals and insects. Recently, we have
proposed a model implementing internucleosomal in-
teractions of non—acetylated repressed chromatin
(predominantly deposited within TADs in Drosophila)
as the driving force for the TAD formation and main-
tenance in Drosophila [18]. Notably, the same mecha-
nism could be responsible for the compaction of the
extrusion—driven loops into globular structures in
mammalian genomes.

The role of the nuclear lamina in chromatin
spatial organization

A considerable portion of the mammalian genome
(about 30—40 %) is associated with the nuclear lam-
ina [4]. The mechanical aspects of chromatin tether-
ing to the NL are not fully understood, but there are
at least two models [28]: zipping structure and point-
ed anchors. According to the first model, the whole
LAD is recruited to the NL that is supported by the
observation that large LADs are typically attached to
the NL via long contact runs. The second model pos-
tulates the existence of a limited number of anchor
points within a LAD that cooperatively provide
LAD attachment to the NL. The main candidates on
the role of such anchors are binding sites for tran-
scriptional repressors [29-31]. However, in the both
models, H3K9 and H3K27 methylation appear to be
crucial for the LAD deposition at the NL, because
the readers for these epigenetic marks are located
within or are recruited to the lamina [32].

There are several controversial reports on the role
of nuclear lamina in the maintenance of the inter-
phase chromatin structure in mammals. Human fi-
broblasts expressing dominant-negative form of
Lamin—A (progerin) demonstrate a considerable loss
of spatial compartmentalization of active and inac-
tive genome regions as revealed by Hi—C analysis,
[an] altered pattern of H3K27me3 distribution and
substantial changes of gene expression [33].
Microscopic studies have revealed that the loss of
Lamin-B1 in mouse fibroblasts results in relocation
of a gene—poor chromosome 18 from the lamina to
the nuclear interior [34], and in a human colon can-
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cer cell line Lamin—-B1 deficiency leads to decon-
densation of chromosome territories [35]. On the
other hand, it has been shown that double knock—
down of Lamin B1/B2 virtually does not affect the
LAD profile and gene expression in mouse ESC
[36]. To this end, some other proteins localized with-
in inner nuclear membrane could be responsible for
the chromatin positioning at nuclear periphery. The
most likely candidates are Lamin—B receptor (LBR)
and LEM-—proteins such as EMD which were found
to interact with chromatin in vivo [37-39].

LAD dynamics: lessons from single—cell
studies

Dynamic interactions between the nuclear lamina
(NL) and interphase chromatin were extensively
studied in Bas van Steensel's laboratory. The first
clear evidence for highly dynamic nature of the NL—
chromatin contacts has been obtained using the mA—
Tracer technology based on the expression of the fu-
sion of GFP protein with the Dpnl restriction enzyme
recognizing methylated adenine in GATC context
[40]. As adenine—6—methylation is a stable covalent
modification, it is inheritable in cell generations al-
lowing one to track the fate of LADs throughout the
cell cycle and after cell division in a living cell ex-
pressing lamin fused with bacterial Dam—methylase
(the enzyme used in DamID technology to methylate
adenine in GATC context). It has been shown that
chromatin attached to the nuclear lamina possesses
remarkably constrained mobility and generally does
not migrate to the nuclear interior during interphase.
However, LADs stochastically reshuffle after mitosis
and some of them could be found in a vicinity of nu-
cleoli in daughter cells. The next breakthrough tech-
nology providing the further progress in understand-
ing the NL—chromatin interaction mechanisms and
dynamics is a recently developed single—cell DamID
approach [41]. The current version of this method is
suitable for studying the NL—chromatin contacts in
single cells at a resolution of 100 Kb. The results ob-
tained indicate that about 15% of the genome com-
posed of constitutive gene—poor LADs associates
with the NL in the majority of cells. This finding sug-

gests the presence of a “scaffold” structure presum-
ably involved in the overall shaping of the chromo-
some spatial configuration. In contrast, about 30 % of
the genome exhibit a high cell-to—cell variability in
the interaction with the nuclear lamina. Interestingly,
distantly located loci often establish the contacts with
the nuclear lamina in a coordinated manner. Further-
more, it was found that at distances up to 20 Mb the
Hi—C profile moderately correlates with the degree of
NL-chromatin contacts. It is tempting to assume that
spatial interactions of remote genomic regions with
each other may direct the coordinated recruitment of
functionally—related loci to the nuclear lamina and
thus provide coordinated gene repression.

Concluding remarks

In sum, the nuclear lamina plays a remarkable role in
the genome folding and regulation. The further un-
derstanding of the mechanisms involved into chro-
matin tethering to the nuclear lamina could be con-
siderably improved by applying new microscopic
and biochemical techniques such as super-resolu-
tion live—cell imaging and combination of single—
cell DamID technique with Hi—C analysis of chro-
matin configuration in the same cell.
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XpoMaTuH acouiiioBaHuii 3 JaMiHaMH B KOHTeKCTi
MPOCTOPOBOI CTPYKTYPH FeHOMA CCaBLiB

C. B. Vaesnos, 1O. 4. lllesensos, C. B. Pa3in

[aTepdasHa XpoMaTHH €ykapioT XapaKTepH3YeThCs i€papXidHoi
IPOCTOPOBOIO CTPYKTYPOr0. XPOMOCOMH CCaBLIiB PO3ALICH] HA TO-
TOJIOTTYHO ACOLIfOBaHI JOMEHH (TajiH), B3aEMOIIT SIKUX OJIUH 3 O1-
HHUM BH3HAYAIOTh HAsBHICTh XPOMATIHOBHX KOMITAPTMEHTOB JIBOX

THITIB, OAWH 3 AKUX (A-KOMIAPTMEHT) MICTUTh aKTHBHI IUTTHKA
TEHOMY, a [JpPYrHid — penpecoBaHi paifoHH 1 TeHHI Mmycreni
(B-xomnaprment). Buytpimms crpykrypa TAJloB npencrasneHa
TOJIOBHUM YHHOM XPOMAaTHHOBHMH METIIMH MDK JUTTHKaAMH
3B's3yBanHs Oimka CTCF i xoresina. Criermdivuna noGyTosiit Ta iH-
I BeMKOMACIITaOHa IMPOCTOPOBA OPraHi3allisi XPOMATHHY IPae
BaKIIMBY POJIb B PEryisiuii poOoTH reHoma. YacTuHa quCTaHIIIi-
HHUX B33a€EMOJiH B XpOMaTHHI BH3HAYAETHCS 3aTy4YCHHSIM Pi3HHUX
paifoHIB reHOMy 10 BHYTPIIIHIX CTPYKTYp siapa. SlnepHa jaMuHa
Oepe yJacTb y BCTAHOBJICHHI Ta IIATPUMII POCTOPOBOI CTPYKTY-
pu xpomarury. B3aemonii xpomaruny 3 sinepHoi JIamin € 3Ha4HOIO
MIpOI0 JIMHAMIYHHUMH, 10 OOYMOBITIOE MOYKJIUBICTH TIepeOyIOoBH
TPUBHUMIPHOI apXiTEeKTypH XPOMATUHY B Psiii KITITHHHUX MOKOJIIHB
i B porieci audepeHiiroBanHs. Y faHiil ONSIIOBI#H cTarTi MU co-
KyCyBaJIM yBary Ha psi/ii HeJIJaBHO OTPHMAHHUX €KCIIEPHMEHTaIbHUX
JTaHKX, 1[0 CTOCYIOTHCSI TIPUPO/IM 1 AMHAMIKY B3a€MOJIH XpOMaTH-
Hy 3 sinepHoi Jlamin.

KuawuoBi cuaoBa: suepHa namuHa, CTPYKTYpU XPOMATHHY,
TAJ, neri, CTCF.

JIaMHHa—aCCOIIHHpOBaHHbIﬁ XPOMATHH B KOHTEKCTE
l'[pOCTpaHCBeHHOﬁ CTPYKTYPbI TeHOMAa MJICKOITUTAIOIIUX

C. B. Vapsnos, 1O. S1. llleenés, C. B. Pasun

WuTepdasHblii XpOMaTHH DyKapHOT XapaKTepu3yeTcs Uepapxu-
YECKOH NPOCTPAHCTBEHHOU CTPYKTypoi. XpOMOCOMBI MJIEKOIIH-
TAIOMNX Pa3JeIeHbl Ha TOMOJIOTHYECKH aCCOLMUPOBAHHBIC J1O-
Mensl (TA/Ip1), B3anMOIEHCTBUS KOTOPBIX JIPYT C IPYTOM OIIpe-
JETAI0T HAJIMYNE XPOMAaTHHOBBIX KOMITAPTMEHTOB ABYX THIIOB,
OJIMH UX KOTOPBIX (A—KOMITapTMEHT) COAEPKUT AaKTUBHBIEC Y4acT-
KU T'€HOMa, a BTOPOH — penpeccupoBaHHbIC PallOHbI U T€HHBIC
nycteiHn  (B—xommaprment). Buytpenssist crpykrypa TAJloB
MpEJCTaBlIeHa TIAaBHBIM 00pa3oM XPOMAaTHHOBBIMHU TETIISIMU
Mexay ydactkamu cBs3biBaHms Oenka CTCF u  koresmna.
Crermbudeckasi JTOKalbHAsE U KPyIHOMACIITAOHAsT MPOCTPaH-
CTBCHHAs OpraHusanus XpoMaTruHa Urpac€T BaXXHYIO POJIb B pery-
JSIUU paboThl reHoMa. YacTh JUCTAHIIMOHHBIX B3aUMOICHCTBII
B XPOMATHHE OTIPE/IeIISIeTCs TPUBJICUCHUEM Pa3HBIX PaHOHOB Te-
HOMa K BHYTPEHHHM CTPYKTypaMm sijpa. SlnepHas laMHHA yda-
CTBYET B YCTaHOBJICHHM W MOJJICPKaHHU IPOCTPAHCTBEHHOU
CTPYKTYpBl XpoMaTuHa. B3auMonencTB1s XpoMaTuHa ¢ siiepHOU
JIAMMHOU SIBJISIIOTCS] B 3HAYMTENILHOM MEpPE NTUHAMUYHBIMH, YTO
00yclIaBIMBaeT BOZMOXKHOCTh HEPECTPOUKH TPEXMEPHOH apXu-
TEKTYpBI XpPOMATHHA B Psily KJIETOUHBIX ITOKOJIEHHIT H B ITpoIiecce
muddeperpoBku. B nanHoi 0030pHOIT cTaThe MBI C(HOKYCHPO-
BaJIM BHIMAHKE Ha Psifie HeaBHO MOYUSHHBIX SKCTIEPUMEHTAITb-
HBIX JIaHHBIX, KacarolIMXcs MPUPOAbI U AUHAMHUKM B3auMOJIEH-
CTBUI XpOMAaTHHA C SA€PHOI JTaMHHOM.

KiuoueBble CJ0BAa: sijiepHas JIAMUHA, CTPYKTYPbI XPOMAaTH-
na, TAJ], netu, CTCF
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