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Cell senescence is an established cell stress response in the form of a permanent proliferation arrest accompa-
nied by a complex phenotype. Senescent cells share several crucial features, such as lack of DNA synthesis, 
increased senescence-associated β-galactosidase activity and upregulation of cyclin-dependent kinase inhibi-
tors. Most of these universal senescence markers are indicative not only for cell senescence but for other types 
of growth arrest as well. Along with ubiquitous markers, cell senescence has accessory characteristics, which 
mostly depend on senescence-inducing stimulus and/or cell type. Here, we review main markers and mecha-
nisms involved in the induction of cell senescence with a focus on stress factor-dependent differences in 
signaling pathways activated in senescence.
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Introduction

Features of cell senescence

Hayflick pioneered studies on cell aging in his ex-
periments with primary human cell cultures. Cells 
were demonstrated to have a limited proliferative 
potential and to enter what is known as cell senes-
cence after a certain number of divisions [1, 2]. The 
maximal number of divisions possible for somatic 
cells has been termed the Hayflick limit since that 
time. Olovnikov (1971) and Watson (1972) indepen-
dently provided an elegant theoretical explanation 
for the phenomenon, describing this as the DNA 
end-replication problem [3, 4]. Far more recently, 
experimental findings to support the telomere mo-
lecular clock hypothesis were reported [5, 6]. 
Moreover, the causes of proliferative arrest and sub-

sequent cell senescence were found to include not 
only telomere shortening, but also a variety of stress 
factors, such as DNA damage, oxidative stress, on-
cogene activation, growth factor deficiency, and 
chemical exposure [7, 8]. Replicative senescence 
and stress-induced senescence (premature senes-
cence) are commonly recognized as distinct phe-
nomena. However, discrimination of replicative se-
nescence and stress-induced senescence is mainly 
based on the nature of inducer, and many biochemi-
cal and morphological signs are common for the 
both types of cell senescence. 

Accumulating experimental data allow consider-
ing cell senescence as one of the programs of cell 
stress response alongside with apoptosis, autophagy, 
necrosis, etc. As a process that globally affects cell 
fate, cell senescence has certain characteristics. 
Some of the characteristics are universal, while oth-
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ers are accessory and vary with the nature of the 
stress-inducing factor and the cell line [9]. The main 
characteristics of cell senescence are the following.

(1) Changes in cell morphology. Cells enlarge and 
acquire flattened morphology. The size of cell nucle-
us increases several-fold; the number of nuclei may 
also increase in the cell. The Golgi system becomes 
more prominent, and extensive vacuolization of the 
cytoplasm is sometimes seen [10, 11].

(2) Higher activity of senescence-associated 
β-galactosidase (SA-β-Gal) at pH 6.0 [12]. Normally, 
β-galactosidase resides in lysosomes and works at 
acidic pH 4.0. SA-β-Gal activity detectable at a sub-
optimal pH 6.0 is currently thought to be due to an 
increase in lysosome content or β-galactosidase ac-
tivity in senescent cells [13–15].

(3) Cyclin-dependent kinase inhibitors are upreg-
ulated to arrest cell proliferation. Two cyclin-depen-
dent kinase inhibitors, p16INK4a and p21CIP1/WAF1, are 
the most typical of cell senescence [7, 16]. Ample 
experimental evidence indicate that p16INK4a and 
p21CIP1/WAF1 function independently of each other and 
are involved in two alternative signaling pathways 
[17] (Figure 1). Apart from the above proteins, other 

cyclin-dependent kinase inhibitors – p27KIP1, p57KIP2, 
and p15INK4b – may contribute to the senescent phe-
notype, but their role was documented only in few 
particular cases of cell senescence [18–20].

Other cell senescence characteristics are accesso-
ry, helping rather to identify the senescence-induc-
ing factor. 

DNA damage signaling is one of the most com-
mon factors triggering the cell senescence [21]. 
Impaired DNA integrity activates repair systems (a 
DNA damage response, DDR), and repair proteins 
are recruited to the sites of DNA damage. Many re-
pair-associated proteins, such as γH2AX, 53BP1, 
MDC1, NBS1, MRE11, and RAD17, concentrate in 
the so-called repair foci, which are detectable by cell 
immunostaining with corresponding antibodies [22, 
23]. Persistent DDR can trigger cell senescence [21].

Condensed chromatin regions known as the senes-
cence-associated heterochromatin foci (SAHF) form 
in the nuclei of senescent cells [24–26]. Cytologically, 
heterochromatin regions are detectable with the DAPI 
DNA intercalating dye. SAHF formation is accompa-
nied by a decrease of nuclease sensitivity [24] and an 
accumulation of protein markers of transcriptionally 
inactive chromatin: histone H3 trimethylated at Lys9 
(H3K9me3), heterochromatin protein 1γ (HP1γ), his-
tone macroH2A, etc. [24–26]. Lamina-associated do-
mains (LAD) detached from the lamina in senescent 
cells were recently shown to provide a structural basis 
of SAHF [27]. Oncogene overexpression and certain 
genotoxic agents are known to be the major inducers 
of cell senescence associated with SAHF formation 
[24, 28]. It should be noted that SAHF formation oc-
curs only in certain cell lines and depends on the na-
ture of the cell senescence-inducing agent [28]. Cell 
senescence accompanied by SAHF formation pro-
ceeds mostly via the p16INK4a-dependent pathway [28]. 

Senescent cells retain high metabolic activity in 
spite of their proliferative arrest. Among other fea-
tures, a specific senescence-associated secretory 
phenotype (SASP) is indicative of this activity [29]. 
Secretion of bioactive molecules, such as cytokines, 
is thought to provide for paracrine cell-to-cell com-
munication and to trigger the inflammatory response 

Fig. 1. Simplified model of the stress-induced inhibition of the 
cell cycle progression (see the text for further details).
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to eliminate cells with signs of senescence from the 
tissues [30]. The SASP is characterized by a slow 
development and takes several days to become de-
tectable after the cell senescence program is trig-
gered [31]. SASP activation involves the MAPK, 
mTOR, and DDR signaling pathways [32–34].

A comparison of microRNA expression between 
normal cells and cells with signs of senescence re-
vealed several tens of senescence-associated mi-
croRNAs (SA-miRNAs), which are potentially in-
volved in regulating development of the senescent 
phenotype [35, 36]. However, results from indepen-
dent experiments lack correlation. Changes in ex-
pression were reliably reproduced for only four SA-
miRNAs: miR-146a, -34a, -29, and -15a [37–46]. It 
is known that miR-146a inhibits SASP induction 
[44, 45]; that miR-34a overexpression is regulated 
by p53 [40, 47] and inhibits E2F signaling [39]; that 
miR-15a overexpression exerts a similar effect [48]; 
and that miR-29 downregulates the B-Myb tran-
scription factor, which is necessary for the normal 
cell cycle progression [43]. The long noncoding 
RNA PANDA, which was identified recently, also 
belongs to noncoding RNAs involved in regulating 
cell senescence [49]. In complex with Polycomb 
group proteins, PANDA inhibits the NF-YA tran-
scription factor to suppress cell senescence [49].

It should be noted that other events additionally 
accompany the large-scale metabolic reorganization 
in senescent cells. The extracellular matrix proteome 
changes [50, 51]; expression of vimentin, fibronectin 
[52, 53], and collagenase [54, 55] increases in some 
cases; the structure of the nuclear lamina is distorted 
[56, 57]; nuclear architecture undergoes substantial 
rearrangements [58, 59], retrotransposon transcrip-
tion increases [60, 61], and the total epigenetic status 
of chromatin is altered [62].

The above changes arise from activation of the 
cell senescence program and develop in accord with 
the nature of the inducing stress factor and the cell 
line. A broad variety of optional (facultative) charac-
ters of cell senescence suggests a variety of signaling 
pathways involved in developing and maintaining 
the senescent phenotype. The mechanisms that po-

tentially mediate the induction and development of 
cell senescence are summarized below. 

Causes of cell senescence
After Hayflick and Moorhead’s experiments [1], 

two hypotheses were suggested to explain why nor-
mal cells stop proliferating [63]. One postulated that 
internal mechanisms determine a finite number of 
cell divisions. The other hypothesis suggested that 
lesions caused by physiological stresses accumulate 
in cultured cells to arrest their division, thus ques-
tioning the existence of the Hayflick limit [64]. Both 
of the hypotheses found support more recently as 
endogenous and exogenous factors were discovered 
to trigger the cell senescence.

Telomeric loop unwinding 
Telomere shortening was the first to be noted as an 

internal trigger of replicative senescence [5]. In 1984, 
Greider and Blackburn worked with the ciliate 
Tetrahymena thermophila and identified telomerase 
as an enzyme that extends the 3’ DNA end (G-strand) 
[65]. Telomerase produces a relatively long 3’ single-
stranded overhang, which is used as a template to syn-
thesize a complementary DNA strand [65]. The total 
length of telomeric chromosome regions is thus in-
creased. More recent studies showed that telomerase 
is absent from human somatic cells, while its activity 
is detectable in immortalized cells and the majority of 
cancer cells [66, 67]. These findings supported the 
telomeric molecular clock concept. 

The telomere length was measured in individual 
cells and dividing cell populations and proved to vary 
greatly [68–70]. It was assumed accordingly that a 
synchronous shortening of all chromosomes is not 
necessary, while an impaired integrity of individual 
telomeres is sufficient for the induction of cell senes-
cence [68, 71, 72]. Furthermore, it was shown that the 
mean 3’-overhang length of individual chromosomes, 
rather than the total telomere length [72, 73], and spe-
cific proteins present in telomeric regions [74] are im-
portant for triggering cell senescence.

Using electron microscopy Griffith et al. observed 
that telomeres are organized in the so-called t-loops 
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[75]. The t-loop formation depends on the presence 
of a 50- to 200-nt 3’ single-stranded overhang, which 
hybridizes with an upstream double-stranded repeat 
to displace one of the strands [75]. A shortening of 
the 3’ single-stranded overhang may cause a t-loop 
unwinding and trigger cell senescence [73]. An im-
portant role in organizing the t-loop is played by 
shelterin complex proteins, which protect the telo-
meres from unwarranted effects of repair systems 
and regulate telomerase activity [76–78]. The mam-
malian shelterin complex includes six proteins: 
TRF1, TRF2, RAP1, TIN2, POT1, and TPP1 [79]. 
Structural alterations of the shelterin complex trig-
ger cell senescence. For instance, a mutant TRF2 
that forms a heterodimer with the native TRF2 to 
block its binding to DNA induces a senescent pheno-
type when expressed in human cells [74, 78].

Thus, telomere loop unwinding is a more common 
phenomenon that triggers the cell senescence pro-
gram. Its potential causes include (i) a total telomere 
length shortening, (ii) a shortening of the 3’ single-
stranded telomeric overhang, or (iii) alterations in the 
composition or structure of the shelterin complex. 
T-loop unwinding allows the chromosome end to be 
recognized as a double-stranded DNA break (DSB) 
and activates the DDR. There is strong evidence that 
the DDR signaling pathway triggers cell senescence 
when the telomere integrity is impaired [80, 81]. The 
model is supported by numerous findings of repair 
proteins, such as γH2AX and 53BP1, on telomeric re-
peats in senescent cells [82, 83]. Moreover, inactiva-
tion of DDR factors prevents cell senescence induced 
by telomere shortening [80, 84, 85]. 

Thus, replicative senescence is induced as a result 
of impaired telomere integrity and DDR activation. 
The p53 protein acts as one of the DDR effectors [86, 
87] and is involved in regulating p21CIP1/WAF1 expres-
sion [88, 89]. These observations agree with the data 
that the p21CIP1/WAF1 signaling cascade plays a major 
role in cell senescence due to telomere dysfunction, 
while a role of p16INK4a is questionable for both hu-
mans and mice [74, 80, 85]. Of note, p16INK4a and 
p21CIP1/WAF1 are sometimes coexpressed in replicative 
senescence, although different functions are ascribed 

to them. It is thought that p21CIP1/WAF1 and p53 play an 
important role in triggering cell senescence, while 
p16INK4a is necessary for its maintenance [90, 91].

DNA damage-induced cell senescence
DNA damage that does not affect the telomere 

structure also can trigger cell senescence [21]. Both 
exogenous and endogenous factors are sources of 
DNA lesions. The former include ultraviolet light 
(UV), ionizing radiation (IR), hyperthermia, reactive 
oxygen species (ROS), and genotoxic chemicals; 
and the latter, endogenous ROS and reactive nitro-
gen species, alkylating agents, spontaneous hydroly-
sis and deamination of nucleotides, replication and 
transcription errors, oncogene expression, and acti-
vation of cell nucleases [92, 93].

Proliferation arrest and a senescent phenotype are 
observed in cells exposed to IR, [94, 95], UV [96, 97], 
genotoxic agents [54, 98], or ROS [99, 100] or result 
from activated oncogene expression [101, 102].

IR-induced cell senescence 
IR is a source of various DNA lesions, such as 

modified bases, apurinic/apyrimidinic (AP) sites, 
and single- (SSB) and double-stranded DNA breaks 
[103]. IR-induced DNA lesions were initially 
thought to cause apoptosis [104]. More recently, IR 
was found to suppress cell proliferation by trigger-
ing cell senescence. Thus cell senescence is induced 
in cultured normal human fibroblasts at 0.1–6 Gy 
[105], human umbilical vein endothelial cells at 4.0 
Gy [106], mouse marrow cells at 4 Gy [107], mouse 
hematopoietic cells at 6.5 Gy [108] and human pulp 
stem cells at 20 Gy [109]. A senescence-like pheno-
type is similarly induced upon IR exposure (6.0–10 
Gy) in cancer cells, including MCF7 breast [110, 
111], human non-small cell lung [112], and PC-3 hu-
man prostate [113] cancer cells. 

IR-induced DNA lesions activate ATM, ATR, 
DNA-PK and cause the formation of repair foci con-
taining 53BP1 and γH2AX [114]. The majority of 
DNA lesions are repaired within one day, but γH2AX 
and 53BP1 repair foci may persist for up to several 
weeks [115]. The persistent DDR foci may trigger cell 
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senescence in case of IR [116]. IR-induced cell senes-
cence proceeds via p53-dependent or p53-indepen-
dent pathways. Phosphorylated p53 and the cyclin-
dependent kinase inhibitor p21CIP1/WAF1 accumulate in 
cells as a result of IR-induced senescence, as was ob-
served in many studies [112, 116]. Phosphorylation of 
p53 in IR-exposed cells involves ATM and, possibly, 
ATR [86]. An ATM-independent pathway mediates 
IR-induced senescence in cells with inactivating mu-
tations of the ATM gene and hTERT expression [117]. 
Changes in expression of p53, p21CIP1/WAF1, and 
p16INK4a are possibly related to activation of the 
MAPK signaling pathway [117]. The other pathway 
mediating senescence in IR-exposed cells depends on 
expression of the cyclin-dependent kinase inhibitor 
p16INK4a and is p53 independent [118]. Coexpression 
of p21CIP1/WAF1 and p16INK4a is sometimes observed in 
cells after IR exposure, indicating that the two signal-
ing cascades act together to mediate IR-induced se-
nescence [94, 107, 109, 112]. 

It should be noted that ROS production may be 
involved in IR-induced cell senescence [119, 120]. 
Cells exposed to low-dose radiation affect the adja-
cent normal cells to activate the DDR and ROS pro-
duction [121]. This IR effect is known as non-target-
ed bystander effect. DNA damage signals arise in the 
adjacent cells as a result of SASP induction and ROS 
generation by cells wherein IR triggered the senes-
cence program [121, 122].

UV-induced cell senescence
UV acts as a potent genotoxic agent [123]. 

Photochemical reactions and severe UV-induced 
oxidative stress alter the nucleotide structure in DNA 
[124]. These lesions are repaired by nucleotide and 
base excision repair systems [125, 126] that intro-
duce breaks in DNA strands in the course of their 
function. In addition, AP sites, SSBs, and DSBs arise 
in DNA upon exposure to UV [127, 128]. These le-
sions result from DNA replication fork collapse 
[129], inefficient or incorrect excision repair [130, 
131], or the ROS effect [132]. UV-induced DNA le-
sions lead to the formation of DDR foci containing 
γH2AX, NBS1, Rad51, and XPA [133, 134].

High-dose UV irradiation usually induces apopto-
sis [135, 136], while low doses cause proliferative ar-
rest with signs of cell senescence [137, 138]. By anal-
ogy with IR, DNA damage signals and oxidative 
stress can be assumed to trigger senescence in UV-
exposed cells [138, 139]. Several signaling pathways 
are potentially involved in UV-induced cell senes-
cence. One is the p53–p21CIP1/WAF1-dependent pathway 
[140]. A role of the p16INK4a-dependent pathway in 
UV-induced senescence cannot also be excluded 
[141]. A rapid increase in p16INK4a expression and pro-
liferative arrest are observed in normal and cancer cell 
cultures exposed to UV [142, 143]. Moreover, p16INK4a 
overexpression in the cell substantially alleviates the 
cytotoxic effect of UV [144]. Signaling cascades from 
activated cell surface receptors may play a role in UV-
induced cell senescence. For instance, IGF-1R proved 
to be necessary for triggering UV-induced senescence 
in human keratinocytes [97]. IGF-1R presumably ac-
tivates the p38 MAPK signaling pathway to play a 
role in cell senescence [97]. 

ROS and cell senescence
ROS were found to play an important role in trig-

gering and maintaining cell senescence [145]. 
Antioxidants abolish or suppress the development of 
cell senescence [146-148]. Moreover, organismal 
aging proved to directly correlate with an accumula-
tion of oxidized proteins [149] and oxidized nucleo-
tides [150] and an increase in DNA lesions [151]. 
NADPH oxidases and 5-lipoxygenase (5-LOX) are 
the main endogenous sources of ROS, and their ac-
tivities can change in cell senescence [152–154].

ROS are capable of directly triggering cell senes-
cence. ROS induction with hydrogen peroxide 
(H2O2) [99, 155–157] or tert-butylhydroperoxide (t-
BHP) [158, 159] was observed to cause cell senes-
cence. ROS induction is necessary for senescence 
due to interferon-β treatment [160]. The ROS con-
tent increases in replicative senescence and prema-
ture senescence triggered by IR, UV, or oncogene 
overexpression [120, 139, 161, 162]. Recent data 
support the idea that ROS not only induce cell senes-
cence, but they are also necessary for making the 
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replicative arrest irreversible via positive feedback 
between ROS production and the DDR [147, 163, 
164]. ROS were also demonstrated to play a role in 
accelerating replicative senescence [165]. 

The mechanism of triggering cell senescence by 
ROS is largely unclear. ROS affect a broad range of 
targets, including proteins, lipids, and nucleic acids 
[166]. ROS-mediated cell senescence is often asso-
ciated with DDR activation as a result of DNA dam-
age [147, 164]. Acting directly, ROS affect not only 
the DNA integrity, but also the functions of impor-
tant transcription factors (NF-kB, AP-1, Nrf2, HIF) 
[167–169] and the signaling pathways (MAPK and 
PI3K/Akt) that regulate cell viability [170, 171].

The role of p53 and p21CIP1/WAF1 in cell senescence 
associated with an increase in ROS was demonstrat-
ed in many experiments [155, 156, 158]. A knock-
down of p53 and p21CIP1/WAF1 substantially decreases 
the ROS production in replicative and non-replica-
tive cell senescence [163]. There is evidence that 
cell senescence is maintained via a feedback loop 
involving an increase in ROS, generation of DNA 
lesions, and p21CIP1/WAF1 expression in aging cells 
[163] (Figure 2). Moreover, p21CIP1/WAF1 can contrib-
ute to the senescent phenotype in a p53-independent 
manner, by facilitating ROS production [100, 172]. 
Takahashi et al. showed that the cyclin-dependent 

kinase inhibitor p16INK4a is associated with ROS pro-
duction through activation of the MAPK signaling 
pathway in human fibroblasts [173] (Figure 2). 

Hypoxia-induced cell senescence 
Given that ROS induce cell senescence, an oppo-

site effect might be expected for hypoxia. In fact, 
there is ample evidence that hypoxia generally sup-
presses cell senescence [174, 175]. Hypoxia exerts 
an effect similar to that of the mTOR kinase inhibitor 
rapamycin, preventing the conversion of reversible 
proliferative arrest to p21CIP1/WAF1-dependent senes-
cence in both cancer and normal cells [176, 177]. 
Still, hypoxia was demonstrated to induce cell senes-
cence in vitro [178–180] and in vivo [181]. 

Welford and Blagosklonny reviewed the roles of 
signaling pathways in activating or suppressing hy-
poxia-induced cell senescence [182, 183]. However, 
the problem is yet far from fully understood. 
Experiments with RNA interference showed that 
p53, p21CIP1/WAF1, and p16INK4a are not essential for 
triggering and maintaining of hypoxia-induced cell 
senescence [178, 180]. The antiapoptotic factor Bcl-
2 was presumably implicated in triggering prema-
ture hypoxia-induced cell senescence [180].

Oncogene-induced cell senescence
The human genome has two groups of genes that 

differently influence the transformation of normal 
cells into cancer cells: oncogenes and tumor sup-
pressor genes. A third group includes proto-onco-
genes, which become oncogenes when affected by 
mutations. Mutations alter either the enzyme func-
tions or the expression level of the affected gene. 
The protein products of many proto-oncogenes regu-
late the cell cycle progression, signal transduction, 
and cell differentiation. For example, the RAS, 
STAT5A, E2F1, WNT, EGFR, MYC, cyclin D1, cy-
clin E1, ERK, etc. are proto-oncogenes [184]. 

In 1997, Serrano et al. were the first to report ex-
perimental evidence that implicates oncogenes in 
triggering cell senescence [101]. Expression of the 
RASV12 oncogene was shown to induce cell senes-
cence in human and mouse primary fibroblasts. 

Fig. 2. Production of ROS may be enhanced by the functioning 
of a positive feedback loop between the MAPK and DDR sig-
naling pathways and the action of the ROS (see the text for fur-
ther details).
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Since that time, the list of potential oncogenes ca-
pable of inducing cell senescence has been substan-
tially extended, and the relevant senescence type 
was termed oncogene-induced senescence (OIS) 
[185]. Of note, the PTEN, NF1, and VHL tumor sup-
pressor genes were additionally identified as genes 
whose mutations lead to cell senescence [186–188].

Two basically different models were proposed to 
explain the mechanisms of OIS [189]. One implies 
DDR activation as a main event in triggering OIS 
[190]. An important argument in favor of this model 
is provided by the experimental finding that inhibi-
tion of DDR (ATM, ATR, p53, CHK1, CHK2) gene 
expression completely or partly suppresses OIS 
[191-193]. Oncogene-induced DDR is thought to re-
sult from ROS production in the cell [162, 194]. A 
substantial increase in ROS production upon onco-
gene overexpression was demonstrated with the ex-
ample of RAS and MYC [162, 194–198]. Inhibition 
of ROS production was shown to prevent RAS-
induced cell senescence [162, 194]. Replicative 
stress due to a change in the velocity of DNA repli-
cation forks is another possible mechanism of onco-
gene-induced DDR [191, 198–200]. In this case, cell 
senescence may be caused by depletion of the nucle-
otide pool [201], an accumulation of oxidized nucle-
otides [197], replication fork reversal [198, 200], or 
DNA re-replication [191]. Activation of DDR com-
ponents plays a main role in triggering cell senes-
cence in this case, while the presence of DNA breaks 
is not necessary [190]. 

Another model assumes that DDR activation is not 
necessary for OIS induction and that oncogene ex-
pression triggers the biochemical cascades that acti-
vate transcription of the CDKN2A genomic locus, 
which codes for p16INK4a and ARF (p14ARF in humans 
and p19ARF in mice) [202, 203]. Activation of their 
genes leads to cell senescence. The model is support-
ed by the fact that ectopic expression of p16INK4a and 
p21CIP1/WAF1 is sufficient for the development of a se-
nescent phenotype [204–206]. Moreover, oncogenes 
do not always trigger the DDR and the formation of 
repair foci [207, 208]. A DDR-independent OIS im-
plies the involvement of two signaling cascades, 

ARF–p53–p21CIP1/WAF1 [102, 186, 209] and p16INK4a–
pRb [101, 205]. ARF was observed to induce prolif-
erative arrest via a p53-dependent pathway, by inhib-
iting p53 degradation [210]. This role is possibly not 
the only one ARF plays in triggering OIS [211]. There 
is also an opinion that ARF acts as an accessory, rath-
er than driving, factor in OIS [101, 212].

Other signaling cascades may be involved in OIS 
as well. For instance, many oncogenes – RAS, RAF, 
ERK, and MEK – code for components of the MAPK 
signaling pathway [213]. Overexpression of MEK is 
alone sufficient to appreciably increase the p53 and 
p16INK4a levels and to induce cell senescence [214]. 
The findings suggest complementary action in OIS 
for the MAPK, p53–p21CIP1/WAF1, and p16INK4a–pRb 
signaling pathways [187, 205, 213]

It is important to note that activation of a particular 
signaling pathway depends not only on the oncogene, 
but also on the cell line. For instance, the BRAFV600E 
oncogene activates p16INK4a- and PI3K-dependent 
pathways in human melanocytes, while a p16INK4a-in-
dependent pathway mediates BRAFV600E-induced se-
nescence in mouse cells [215–217]. Moreover, OIS is 
not induced at all in some cells [218].

Conclusions
Here, we review main markers and mechanisms 

involved in the induction of cell senescence. It is ob-
vious that the senescent cells share several most cru-
cial features, such as lack of DNA synthesis, in-
creased SA-β-gal activity and upregulation of cy-
clin-dependent kinase inhibitors. Most of these uni-
versal senescence markers are indicative not only for 
cell senescence but for other types of growth arrest 
as well. At the same time particular senescent cell 
may have a number of accessory unique senescence-
associated characteristics, which mostly depend on 
senescence-inducing stimulus and/or cell type. It 
might be useful to develop clear system of cell se-
nescence phenotype classification.
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Особливості молекулярних механізмів передчасного 
клітинного старіння, які залежать від стрес-фактору, 
що індукує старіння

Надєжда В. Петрова, Артем К. Величко, 
Наталія В. Петрова, Сергій В. Разін, Омар Л. Кантидзе

Клітинне старіння є відповіддю клітини на стрес у вигляді 
перманентного арешту проліферації, супроводжуваного 
комплексом фенотипічних змін. Найбільш важливими озна-
ками клітинного старіння є відсутність синтезу ДНК, збіль-
шення активності асоційованої зі старінням β-галактозидази 
і збільшення експресії інгібіторів циклин-залежних кіназ. Ці 
універсальні маркери клітинного старіння характерні також і 
для інших типів арешту проліферації клітин. Поряд з універ-
сальними маркерами клітинне старіння має додаткові харак-
теристики, які більшою мірою залежать від фактора, що інду-
кує старіння та / або типу клітин. У цьому огляді ми розгляне-
мо основні характеристики і механізми, індукції клітинного 
старіння, приділивши особливу уваги залежних від стрес-
фактора відмінностям активуються при клітинному старінні 
сигнальних каскадів.

К л юч ов і  с л ов а: клітинне старіння, теломери, пошко-
дження ДНК, опромінення, активні форми кисню, онкогени

Особенности молекулярных механизмов 
преждевременного клеточного старения, зависящие 
от индуцирующего старение стресс-фактора.

Надежда В. Петрова, Артем К. Величко, 
Наталья В. Петрова, Сергей В. Разин, Омар Л. Кантидзе

Клеточное старение является клеточным ответом на стресс в 
виде перманентного ареста пролиферации, сопровождаемого 
комплексом фенотипических изменений. Наиболее важными 
признаками клеточного старения являются отсутствие синтеза 
ДНК, увеличение активности ассоциированной со старением 
β-галактозидазы и увеличение экспрессии ингибиторов 
циклин-зависимых киназ. Эти универсальные маркеры кле-
точного старения характерны также и для других типов ареста 
пролиферации клеток. Наряду с универсальными маркерами 
клеточное старение имеет дополнительные характеристики, 
которые в большей степени зависят от индуцирующего старе-
ние фактора и/или типа клеток. В этом обзоре мы рассмотрим 
основные характеристики и механизмы, участвующие в ин-
дукции клеточного старения, уделив особое внимания завися-
щим от стресс-фактора различиям активируемых при клеточ-
ном старении сигнальных каскадов.

К л юч е в ы е  с л ов а: клеточное старение, теломеры, повреж-
дения ДНК, облучение, активные формы кислорода, онкогены
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