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Aim. To develop the porous functionalized collagen scaffold for the delivery of FGF-2 and studying its

properties in vitro and in vivo. Methods. Porous collagen scaffolds were prepared by freeze- drying collagen I

solutions containing the polymer developed on the basis of cross-linked modified heparin. The scaffolds have

been analyzed by SEM, AFM and SCLM. The angiogenic activity of these scaffolds loaded with FGF-2 was

tested in a CAM assay. Results. The data obtained by SEM and SCLM analysis revealed that the scaffold mainly

has a layered structure with pores forming a connection between the layers. The average pore size of the scaffolds

varied from 76 to 150 µm. Scaffolds containing the polymer were able to incorporate human FGF-2. Proposed

compositions promoted angiogenesis in CAM assay. Conclusions. The developed porous functionalized

collagen scaffold incorporating FGF-2 can be used as a vehicle for the sustained delivery of the growth factor

both in vitro and in vivo.
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Introduction. A variety of human pathologies such as

critical limb ischemia, venous stasis, stroke, angina, in-

farction, diabetic ulcers, etc. are the consequences of se-

vere blood flow violation resulted in the tissue ische-

mia. These pathologies are among the major causes of

human morbidity and mortality. For example, accor-

ding to different estimations, the peripheral arterial di-

sease alone affects up to 10 % of people worldwide, ri-

sing to 15–20 % in humans after 70 years. In Europe

and North America around 27 million people are affec-

ted [1]. The existing therapeutic and surgical approa-

ches for the correction of vessel beds do not always re-

sult in a proper reconstitution of the blood flow, and, as

a consequence, fail to restore the functional state of the

damaged tissues. Various studies have proven that the

administration of several proangiogenic growth factors

can induce and enhance the neovascularization in the in-

jured tissues [2, 3]. Since FGF-2, as well as FGF-1, is a

potent mitogen and chemoatractant for fibroblasts, as

well as for endothelial cells, it appears to be a strong can-

didate as a potentiating agent for therapeutic angioge-

nesis [4, 5]. However, the FGF-2 application is limited

by the need to maintain its prolonged local release at

the levels sufficient to stimulate angiogenesis. The sta-

bilization of the newly formed vessels is another prob-

lem to be solved. It has been demonstrated that several

components of the extracellular matrix, for example

collagen I, could stabilize the vessels [6, 7]. Thus, the

development of a vehicle that can maintain the sustai-

ned release of the FGF-2, stabilize de novo formed

vessels, and provide a temporary support for the cells

migrating to the damaged site, can enhance the thera-

ISSN 0233–7657. Biopolymers and Cell. 2014. Vol. 30. N 3. P. 216–222 doi: http://dx.doi.org/10.7124/bc.000899

� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2014



peutic angiogenesis, and restore appropriate blood flow

in ischemic tissue.

The present study focuses on the development of a

porous functionalized collagen-based scaffold for the

delivery of FGF-2 and on its properties in vitro and in

vivo.

Materials and methods. Type I collagen was ex-

tracted from bovine tendons, all materials were kept at

–20 °C. Type I collagen was extracted using the pep-

sin-based acidic extraction method described by Zeu-

golis et al. [ 8], lyophilized, and stored at –20 °C for

further application. Collagen extracts were analyzed by

SDS-PAGE according to the Laemmli method [9] using

10 % separating gels. Recombinant human FGF-2 was

supplied by «Interpharmbiotek» (Ukraine). Heparin was

obtained from «BIOFER SpA» (Italy), 1-ethyl-3-(3-di-

methylaminopropyl)carbodiimide hydrochloride (EDC)

and adipic dihydrazide were from «Sigma-Aldrich»

(USA).

Preparation of the cross-linked heparin. 100 mg of

heparin and 15 mg of adipic dihydrazide were dissol-

ved in 450 �l of water, and the pH was adjusted to 4.2–

4.5 with diluted hydrochloric acid. Then EDC carbo-

diimide (30 mg) was added and quickly dissolved in the

reaction mixture, the hydrogel formation started in 20–

30 s. The mixture was kept for 30 min at room tempe-

rature. The gel was crushed, and extensively washed

with water followed by ethanol. After each washing

step the polymer was collected by centrifugation. The

resulting material was vacuum dried. Prior to use, the

polymer was suspended in saline and sonicated.

MTT assay. The influence of the developed poly-

mer on the viability of CHO-K1 cells was tested in the

colorimetric MTT metabolic activity assay. CHO-K1

cells (1 � 104 cells per well) were cultured at 37 oC, 5 %

CO2 in the presence of polymer in varying concentra-

tions for 72 h. The cells treated with complete culture

medium (F-10 culture medium («Sigma-Aldrich»), con-

taining 10 % of embryonic calf serum («Sigma»), 100

U/ml of penicillin, and 100�g/ml of streptomycin) only

served as a negative control group. The assay was per-

formed according to the method by Denizot et al. [10].

The experiment for each concentration point was per-

formed in triplicate. The relative cell viability was ex-

pressed as a percentage to the control cells treated with

a complete culture medium. To assess significance of

the discrepancies we used the non-parametric criterion

of Mann-Whitney (U).

Fabrication of porous functionalized collagen scaf-

folds. Porous collagen scaffolds were prepared by fre-

eze-drying the collagen solution (10 mg/ml) in 0.1 M

acetic acid, containing 1 mg/ml of the developed hepa-

rin polymer. The scaffolds were stored at –20 oC for

further application.

Swelling studies. Dried pieces of the scaffolds were

used to determine the water uptake. The ratio of water

absorption (Wa) was determined by immersing the mat-

rices (0.25 cm2) into 0.1 M HEPES pH 7.2 (0.5 ml) for

24 h soak at 4 oC. Afterwards, they were removed from

the solution, blotted with filter paper, and weighed. Wa

was calculated using the following equation [11]: Wa

(%) = (Ws – Wd) /Ws �100, where Ws – the weight of the

swollen sample, Wd – the weight of dried sample.

Loading/release of FGF-2. FGF-2 was dissolved in

PBS to the final concentration of 0.2 mg/ml. The samp-

le was pre-weighed, UV-treated and swollen overnight

in 0.1 M HEPES pH 7.4. Subsequently the matrices

were immersed into 0.1 ml of the FGF-2 solution for 24

h at 4 oC. After withdrawing the solution, the remaining

matrices were washed once with 0.5 ml of saline, im-

mersed into 0.1 ml of F-10 («Sigma»), chosen as a re-

lease medium, and incubated at 37 oC. In certain time

intervals the immersion medium was changed with the

same volume of fresh one. The FGF-2 content in the

matrices and media was analyzed by SDS-PAGE. The

quantity of FGF-2 in the samples studied was determi-

ned by densitometry of polyacrylamide gel electropho-

regrams. For this purpose the SDS-PAGE gels were

stained with Coomassie Brilliant Blue according to [9],

documented by ChemiDoc™ XRS+ System («Bio-

Rad», USA), and subsequently analyzed with «Image

Lab SoftwareTM» («Bio-Rad»).

Cell culture. The CHO-K1 cell line was obtained

from the Russian cell culture collection [12]. The cells

were cultured in the F10 culture medium («Sigma-Al-

drich»), containing 10 % of fetal calf serum («Sigma»),

100 U/ml of penicillin, and 100 �g/ml of streptomycin.

In order to test the viability and distribution of the mam-

malian cells cultured on developed scaffolds, 1 �106 CHO-

K1 cells were seeded on 1 cm2 of a porous scaffold.

Scanning electron microscopy (SEM). The freeze-

dried samples of developed matrices were coated with a
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10–30 nm thick gold-metal layer to improve the surface

conductivity, and examined for morphological details

with the Jeol JSM 35C and Jeol JSM 6060LA scanning

electron microscopes (Tokyo, Japan).

Confocal microscopy. The morphological details of

the matrices in solution and distribution of the seeded

cells were studied using the confocal scanning micro-

scope AXIOSKOP-2 ZEISS with the laser scanning

program LSM 510 PASCAL («Carl Zeiss», Germany).

AFM imaging. All measurements were performed

using the AFM NT-206 atomic force microscope (Bela-

rus). The images were obtained using triangular silicon

cantilevers (NSC 11) with a nominal spring constant of

48 N/m, frequency 372.329 kHz. Tip curvature radius

was < 10 nm. The scaffolds were equilibrated with 0.1

M HEPES (pH 7.4), and then placed on a glass substrate

and incubated in air for 2 days at room temperature be-

fore the study.

CAM assay. The ability of the developed functiona-

lized scaffolds loaded with FGF-2 to induce angiogene-

sis in vivo was studied with a modified chorioallantoic

membrane (CAM) assay according to the method des-

cribed by Wilting et al. [13].

Results and discussion. The main common feature

of the proteins belonging to the FGF family is their ex-

traordinarily high affinity to heparin and heparin sulfa-

te proteoglycans [14, 15 ]. The binding of FGF-2 to he-

parin sulfate proteoglycans on the cell surface serves as

a mechanism for creating storage site for the proteins,

from which they could be released when needed. Addi-

tionally, the interactions with heparin could stabilize

these proteins and potentiate their angiogenic activity.

Therefore we chose to develop a carrier for FGF-2 based

on heparin.

Heparin is a natural water-soluble polysaccharide

consisting of the units of glucuronic acid and sulfoglu-

cosamine. The presence of numerous carboxylic groups

allows easy functionalization and modification of this

polymer. We have developed a convenient protocol for

its cross-linking, based on the reaction of heparin with

a known bifunctional reagent, adipic dihydrazide (10–

20 % by weight), in the presence of water-soluble carbo-

diimide in aqueous medium at slightly acidic pH. The

reaction proceeds via the formation of hydrazide bonds

between the COOH functions of the polysaccharide

chains and a cross-linking reagent (Fig. 1). The process

is fast and results in the formation of a sufficiently stab-

le heparin hydrogel which is insoluble in water. The op-

timal properties of the polymer were achieved at a con-

tent of 15 % of the cross-linking reagent.
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The influence of the developed polymer on the via-

bility of mammalian cells was studied with the CHO-

K1 cell line. The viability of these cells was assayed af-

ter 72 h of exposition with a common MTT assay, which

demonstrated that the polymer did not substantially

change the metabolic activity of CHO-K1 cells at any

concentration tested (Fig. 2, A). The incubation at the

highest polymer concentration (4.5 mg/ml) slightly

reduced the cell viability, though not significantly. For

future studies we have chosen the concentrations below

1 mg/ml. FGF-2 loaded on the obtained polymer binds

effectively after 1 hour of co-incubation in saline at 22
oC (Fig. 2, B). The maximum binding capacity under

these conditions was observed at the polymer concent-

ration of 12–15 �g of FGF-2 per 1 mg of the polymer.

An efficient scaffold should be highly porous with large

surface/volume ratio to accommodate a large number of

cells in order to facilitate the migration of the cells into

the functionalized collagen scaffold containing FGF-2.

This allows neovascularization of the matrix and stabi-

lizes the formation of vessel network. The functionali-

zed collagen scaffold was created by freeze-drying the

collagen I solution containing the developed polymer

for the FGF-2 incorporation. The scaffolds were analy-

zed by SEM and SCLM to study the structure obtained

in dried state as well as in solution. For the SCLM stu-

dies the scaffolds were firstly sterilized by UV, immer-

sed in 0.1 M HEPES buffer (pH 7.4) for 24 h at 4 oC,

and then equilibrated with the F-10 culture medium for

additional 24 h. These data revealed that the scaffold had

a layered structure with pores connecting the layers. The

average pore size of the developed scaffolds varied in

the range of 76– 150�m (Fig. 3, A, C) in dried state, and

did not change significantly in solution. The distribution

of the polymer particles in the developed scaffold was

studied by AFM and SCLM. Both demonstrated that

the particles are located densely within the scaffold. The

analysis of AFM images revealed the presence of large

aggregates consisting of separate granules (the size va-

ried between 165 and 364 nm), and their distribution

pattern was not uniform (Fig. 3, B).

As shown before, the scaffold swelling properties

significantly influence cell behavior (namely adhesion,

growth, differentiation), and directly affect the diffusion

rate for any nutrients necessary for the growth of cells

within the scaffold. The swelling studies demonstrated

that the water uptake by the scaffolds was 1569 %. which

indicates that the scaffold will provide appropriate

conditions for the cells and easily absorb fluid and do-

nate moisture if placed directly into the wound. A high

water content could be explained by the hydrophilic na-

ture of both the collagen and the heparin-based hydro-

gel, as well as by a high porosity of sponges which are

meant to hold the water inside the pores. The heparin-

based polymer within the scaffolds preserved its ability

to incorporate the recombinant human FGF-2. The ave-

rage binding capacity under these conditions was 50

�g/cm2 of the scaffold, while unmodified collagen scaf-

fold was able to absorb only 0.94 �g/cm2 of the protein

due to the retention of FGF-2 within the pores.

As stated before, in order to induce angiogenesis in

the ischemic tissue efficiently, the carrier has to release

FGF-2 for a long time at the site of its administration.

We have studied the FGF-2 release from the developed

scaffold immersed in 0.1 ml of F-10 chosen as a relea-

se medium, and incubated at 37 oC. Fig. 3 shows a re-

lease profile for FGF-2 from the developed scaffold as

a cumulative amount of the protein released in time. All

samples exhibited a fast release of FGF-2 in the first 3 h

of incubation, and then a relatively steady and slow re-

lease for up to 3 days (72 h) (Fig. 4). The initial fast

release has to be attributed to FGF-2 trapped inside the

pores of the scaffold, but not directly adsorbed onto the

developed polymer. It could be confirmed by the fact
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Fig. 2. A – dose-response viability of CHO-K1 cells cultured in the

presence of developed polymer detected by MTT-assay. The viability

of CHO-K1 cells after 72 h treatment with polymer. Each value was

calculated from three samples and presented as mean ± SD; B –

analysis of FGF-2 loading on the developed polymer by SDS-PAGE

(after 1 h of incubation at 22
o
C ) (1 – supernatant; 2–5 – pelleted poly-

mer; 6–7 – recombinant FGF-2 marker



that we have observed a complete release of FGF-2 from

the control scaffold made only of collagen during the

first 3 h of incubation.

To assess the ability of the developed scaffolds to

promote cell adhesion and growth, the CHO-K1 cells

were seeded on the scaffold. The cells were incubated

in the complete culture medium for 6 days. The cells be-

came attached to the scaffold in 30 min, and after 6 days

in culture a significant increase in cell number was ob-

served, which proved their proliferative activity (Fig.

5, A). The data obtained by SCLM revealed that the

colonization of the scaffold extends not only over the

surface, but also inside the matrix (Fig. 5, B). Thus, on

the basis of data obtained one can suggest that the deve-

loped functionalized collagen scaffolds would support

not only cell growth, but also migration and coloniza-

tion of the scaffolds both in vitro and in vivo.

It is generally known that FGF-2 has a powerful

pro-angiogenic activity, but could potentially lose this

biological activity when loaded onto the different carri-

ers. Thus, the ability of the developed functionalized

scaffolds loaded with FGF-2 to induce the angiogene-

sis in vivo was studied by a CAM assay. The angioge-

nic activity of the scaffolds was determined after three
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Fig. 3. Images of developed functionalized collagen scaffolds: A – SEM image (scale bar = 100 �m); B – AFM image: interior view of scaffold; C –

SCLM image (double staining-acridine orange and ethidium bromide, scale bar = 20 �m); the polymer particles are stained in red
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days of incubation. The controls treated with an empty

vehicle showed a large blood vessel without any signi-

ficant sprouts. In contrast, a vehicle loaded with 1 �g of

FGF-2 elicited a strong angiogenic response (Fig. 6),

which leads to the conclusion that FGF-2 loaded on the

developed scaffold did not lose its biological activity,

and can be tested for the induction of angiogenesis in vi-

vo in different ischemic animal models.

Conclusions. The present study focuses on the de-

velopment of a functionalized collagen scaffold for the

delivery of FGF-2, which can not only provide a sus-

tained release of the growth factor in vivo but also help

to stabilize the newly formed vessels. The FGF-2 poly-

mer carrier based on modified cross-linked heparin has

been developed, and the functionalized collagen scaf-

folds with layered structure, interconnected by the po-

res of 76–150 �m in diameter were produced by the

freeze-drying technique. The swelling tests showed a

high water uptake of the scaffolds, which indicates that

the scaffold is able to provide appropriate conditions

for the cells.

The study revealed that the average binding capa

city, under the conditions that were tested, was 50 �g/

cm2 of the scaffold. All samples exhibited a fast release

of FGF-2 in the first three hours of incubation, and then

a steady and slow release for up to three days. The de-

veloped functionalized collagen scaffolds supported

not only cell growth, but also migration and coloniza-

tion of scaffolds in vitro. Lastly, the vehicles loaded

with FGF-2 strongly elicited an angiogenic response in

the CAM assay.

Thus, these results indicate that the proposed func-

tionalized collagen scaffolds loaded with FGF-2 can be

used as a vehicle for the sustained delivery of the growth

factor both in vitro and in vivo.
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Ñòâîðåííÿ òà äîñë³äæåííÿ âëàñòèâîñòåé ïîðèñòèõ

ôóíêö³îíàë³çîâàíèõ êîëàãåíîâèõ ñêàôîëä³â äëÿ äîñòàâêè FGF-2

ß. Î. Ïîõîëåíêî, Ì. Ä. ×åòèð³êíà, Ë. Â. Äóáåé, ². ß. Äóáåé,

Î. Â. Ìîøèíåöü, ª. Â. Øåëóäüêî, Ñ. Ï. Øïèëüîâà,

Ì. ². Äåãòÿðåâà, Â. À. Êîðäþì

Ðåçþìå

Ìåòà. Ðîçðîáêà ïîðèñòèõ ôóíêö³îíàë³çîâàíèõ êîëàãåíîâèõ ñêà-

ôîëä³â äëÿ äîñòàâêè FGF-2, à òàêîæ âèâ÷åííÿ ¿õí³õ âëàñòèâîñòåé

in vitro òà in vivo. Ìåòîäè. Ïîðèñò³ êîëàãåíîâ³ ñêàôîëäè îäåð-

æàíî ìåòîäîì ë³îô³ëüíîãî ñóáë³ìàö³éíîãî âèñóøóâàííÿ ðîç÷èíó

êîëàãåíó òèïó ², ÿêèé ì³ñòèòü ñòâîðåíèé ïîë³ìåð íà îñíîâ³ ìîäè-

ô³êîâàíîãî çøèòîãî ãåïàðèíó. Ñêàôîëäè àíàë³çóâàëè ìåòîäàìè

ÑÅÌ, ÀÑÌ ³ ËÑÊÌ. Àíã³îãåíí³ âëàñòèâîñò³ êîëàãåíîâèõ ñêàôîë-

ä³â, ÿê³ ì³ñòÿòü FGF-2, âèâ÷àëè íà ìîäåë³ õîð³îí-àëàíòî¿ñíî¿

ìåìáðàíè åìáð³îíà êóð÷àòè. Ðåçóëüòàòè. Äàí³, îòðèìàí³ ìåòî-

äàìè ÑÅÌ ³ ËÑÊÌ, ñâ³ä÷àòü ïðî òå, ùî îäåðæàíèé ñêàôîëä ìàº

ïåðâàæíî øàðóâàòó ñòðóêòóðó ç ïîðàìè, ÿê³ ç�ºäíóþòü ð³çí³ øà-

ðè. Ñåðåäí³é ðîçì³ð ïîð âàð³þº â³ä 76 äî 150 ìêì. Ñêàôîëäè, äî

ñêëàäó ÿêèõ âõîäèòü ñòâîðåíèé ïîë³ìåð, çäàòí³ àäñîðáóâàòè ðå-

êîìá³íàíòíèé FGF-2 ëþäèíè. Çàïðîïîíîâàí³ êîìïîçèö³¿ ñòèìóëþ-

þòü àíã³îãåíåç íà ìîäåë³ õîð³îí-àëàíòî¿ñíî¿ ìåìáðàíè åìáð³îíà

êóð÷àòè. Âèñíîâêè. Ðîçðîáëåí³ ïîðèñò³ ôóíêö³îíàë³çîâàí³ êîëàãå-

íîâ³ ñêàôîëäè, ÿê³ ì³ñòÿòü FGF-2, ìîæíà âèêîðèñòîâóâàòè ÿê

çàñ³á äëÿ äîñòàâêè äàíîãî ðîñòîâîãî ôàêòîðà, ùî çàáåçïå÷óº éî-

ãî òðèâàëå âèâ³ëüíåííÿ ÿê in vitro, òàê in vivo.

Êëþ÷îâ³ ñëîâà: ã³äðîãåëü, ôàêòîð ðîñòó ô³áðîáëàñò³â-2, àíã³î-

ãåíåç, êîëàãåí, ãåïàðèí.

Ñîçäàíèå è èçó÷åíèå ñâîéñòâ ïîðèñòûõ ôóíêöèîíàëèçèðîâàííûõ

êîëëàãåíîâûõ ñêàôôîëäîâ äëÿ äîñòàâêè FGF-2

ß. À. Ïîõîëåíêî, Ì. Ä. ×åòûðêèíà, Ë. Â. Äóáåé, È. ß. Äóáåé,

Å. Â. Ìîøèíåö, Å. Â. Øåëóäüêî, Ñ. Ï. Øïèëåâàÿ,

Ì. È. Äåãòÿðåâà, Â. À. Êîðäþì

Ðåçþìå

Öåëü. Ðàçðàáîòêà ïîðèñòûõ ôóíêöèîíàëèçèðîâàííûõ êîëëàãåíî-

âûõ ñêàôôîëäîâ äëÿ äîñòàâêè FGF-2 è èçó÷åíèå èõ ñâîéñòâ in

vitro è in vivo. Ìåòîäû. Ïîðèñòûå êîëëàãåíîâûå ñêàôôîëäû ïî-

ëó÷åíû ìåòîäîì ëèîôèëüíîé ñóáëèìàöèîííîé ñóøêè ðàñòâîðà

êîëëàãåíà òèïà I, ñîäåðæàùåãî ñîçäàííûé ïîëèìåð íà îñíîâå ìî-

äèôèöèðîâàííîãî ñøèòîãî ãåïàðèíà. Ñêàôôîëäû àíàëèçèðîâàëè

ìåòîäàìè ÑÝÌ, ÀÑÌ è ËÑÊÌ. Àíãèîãåííûå ñâîéñòâà ðàçðàáî-

òàííûõ êîëëàãåíîâûõ ñêàôôîëäîâ, ñîäåðæàùèõ FGF-2, èçó÷àëè

íà ìîäåëè õîðèîí-àëëàíòîèñíîé ìåìáðàíû êóðèíîãî ýìáðèîíà.

Ðåçóëüòàòû. Äàííûå, ïîëó÷åííûå ìåòîäàìè ÑÝÌ è ËÑÊÌ, ñâè-

äåòåëüñòâóþò î òîì, ÷òî ñîçäàííûé ñêàôôîëä â îñíîâíîì èìå-

åò ñëîèñòóþ ñòðóêòóðó ñ ïîðàìè, ñîåäèíÿþùèìè ðàçíûå ñëîè.

Ñðåäíèé ðàçìåð ïîð âàðüèðóåò îò 76 äî 150 ìêì. Ñêàôôîëäû, ñî-

äåðæàùèå ïîëó÷åííûé ïîëèìåð, ñïîñîáíû àäñîðáèðîâàòü ðåêîì-

áèíàíòíûé FGF-2 ÷åëîâåêà. Ïðåäëîæåííûå êîìïîçèöèè ñòèìó-
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ExperimentControl

Fig. 6. Angiogenic activity of the developed scaffold with FGF-2 in

the CAM assay. The developed scaffolds containing FGF-2 were pla-

ced on CAMs of the 8-day-old chicken embryos. Places of application

are indicated by arrows. Empty scaffold was used as a negative control
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ëèðóþò àíãèîãåíåç íà ìîäåëè õîðèîí-àëëàíòîèñíîé ìåìáðàíû êó-

ðèíîãî ýìáðèîíà. Âûâîäû. Ðàçðàáîòàííûå ïîðèñòûå ôóíêöèîíà-

ëèçèðîâàííûå êîëëàãåíîâûå ñêàôôîëäû, ñîäåðæàùèå FGF-2,

ìîæíî èñïîëüçîâàòü êàê ñðåäñòâî äëÿ äîñòàâêè äàííîãî ðîñòî-

âîãî ôàêòîðà, îáåñïå÷èâàþùåå åãî äëèòåëüíîå âûñâîáîæäåíèå,

êàê in vitro, òàê in vivo.

Êëþ÷åâûå ñëîâà: ãèäðîãåëü, ôàêòîð ðîñòà ôèáðîáëàñòîâ-2,

àíãèîãåíåç, êîëëàãåí, ãåïàðèí.
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