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Aim. To develop the porous functionalized collagen scaffold for the delivery of FGF-2 and studying its
properties in vitro and in vivo. Methods. Porous collagen scaffolds were prepared by freeze- drying collagen I
solutions containing the polymer developed on the basis of cross-linked modified heparin. The scaffolds have
been analyzed by SEM, AFM and SCLM. The angiogenic activity of these scaffolds loaded with FGF-2 was
tested in a CAM assay. Results. The data obtained by SEM and SCLM analysis revealed that the scaffold mainly
has a layered structure with pores forming a connection between the layers. The average pore size of the scaffolds
varied from 76 to 150 um. Scaffolds containing the polymer were able to incorporate human FGF-2. Proposed
compositions promoted angiogenesis in CAM assay. Conclusions. The developed porous functionalized
collagen scaffold incorporating FGF-2 can be used as a vehicle for the sustained delivery of the growth factor
both in vitro and in vivo.
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Introduction. A variety of human pathologies such as
critical limb ischemia, venous stasis, stroke, angina, in-
farction, diabetic ulcers, efc. are the consequences of se-
vere blood flow violation resulted in the tissue ische-
mia. These pathologies are among the major causes of
human morbidity and mortality. For example, accor-
ding to different estimations, the peripheral arterial di-
sease alone affects up to 10 % of people worldwide, ri-
sing to 15-20 % in humans after 70 years. In Europe
and North America around 27 million people are affec-
ted [1]. The existing therapeutic and surgical approa-
ches for the correction of vessel beds do not always re-
sult in a proper reconstitution of the blood flow, and, as
a consequence, fail to restore the functional state of the
damaged tissues. Various studies have proven that the
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administration of several proangiogenic growth factors
can induce and enhance the neovascularization in the in-
jured tissues [2, 3]. Since FGF-2, as well as FGF-1, is a
potent mitogen and chemoatractant for fibroblasts, as
well as for endothelial cells, it appears to be a strong can-
didate as a potentiating agent for therapeutic angioge-
nesis [4, 5]. However, the FGF-2 application is limited
by the need to maintain its prolonged local release at
the levels sufficient to stimulate angiogenesis. The sta-
bilization of the newly formed vessels is another prob-
lem to be solved. It has been demonstrated that several
components of the extracellular matrix, for example
collagen I, could stabilize the vessels [6, 7]. Thus, the
development of a vehicle that can maintain the sustai-
ned release of the FGF-2, stabilize de novo formed
vessels, and provide a temporary support for the cells
migrating to the damaged site, can enhance the thera-



DEVELOPMENT OF SCAFFOLDS FOR THE DELIVERY OF FGF-2

peutic angiogenesis, and restore appropriate blood flow
in ischemic tissue.

The present study focuses on the development of a
porous functionalized collagen-based scaffold for the
delivery of FGF-2 and on its properties in vitro and in
Vivo.

Materials and methods. Type I collagen was ex-
tracted from bovine tendons, all materials were kept at
—20 °C. Type I collagen was extracted using the pep-
sin-based acidic extraction method described by Zeu-
golis et al. [ 8], lyophilized, and stored at —20 °C for
further application. Collagen extracts were analyzed by
SDS-PAGE according to the Laemmli method [9] using
10 % separating gels. Recombinant human FGF-2 was
supplied by «Interpharmbiotek» (Ukraine). Heparin was
obtained from «BIOFER SpA» (Italy), 1-ethyl-3-(3-di-
methylaminopropyl)carbodiimide hydrochloride (EDC)
and adipic dihydrazide were from «Sigma-Aldrich»
(USA).

Preparation of the cross-linked heparin. 100 mg of
heparin and 15 mg of adipic dihydrazide were dissol-
ved in 450 pul of water, and the pH was adjusted to 4.2—
4.5 with diluted hydrochloric acid. Then EDC carbo-
diimide (30 mg) was added and quickly dissolved in the
reaction mixture, the hydrogel formation started in 20—
30 s. The mixture was kept for 30 min at room tempe-
rature. The gel was crushed, and extensively washed
with water followed by ethanol. After each washing
step the polymer was collected by centrifugation. The
resulting material was vacuum dried. Prior to use, the
polymer was suspended in saline and sonicated.

MTT assay. The influence of the developed poly-
mer on the viability of CHO-K1 cells was tested in the
colorimetric MTT metabolic activity assay. CHO-K1
cells (1 - 10 cells per well) were cultured at 37 °C, 5 %
CO, in the presence of polymer in varying concentra-
tions for 72 h. The cells treated with complete culture
medium (F-10 culture medium («Sigma-Aldrich»), con-
taining 10 % of embryonic calf serum («Sigma»), 100
U/ml of penicillin, and 100 pg/ml of streptomycin) only
served as a negative control group. The assay was per-
formed according to the method by Denizot et al. [10].
The experiment for each concentration point was per-
formed in triplicate. The relative cell viability was ex-
pressed as a percentage to the control cells treated with
a complete culture medium. To assess significance of

the discrepancies we used the non-parametric criterion
of Mann-Whitney (U).

Fabrication of porous functionalized collagen scaf-
folds. Porous collagen scaffolds were prepared by fre-
eze-drying the collagen solution (10 mg/ml) in 0.1 M
acetic acid, containing 1 mg/ml of the developed hepa-
rin polymer. The scaffolds were stored at —20 °C for
further application.

Swelling studies. Dried pieces of the scaffolds were
used to determine the water uptake. The ratio of water
absorption (/) was determined by immersing the mat-
rices (0.25 cm®) into 0.1 M HEPES pH 7.2 (0.5 ml) for
24 h soak at 4 °C. Afterwards, they were removed from
the solution, blotted with filter paper, and weighed. WV,
was calculated using the following equation [11]: W,
(%)=(W.,— W, /W, -100, where W, — the weight of the
swollen sample, W, — the weight of dried sample.

Loading/release of FGF-2. FGF-2 was dissolved in
PBS to the final concentration of 0.2 mg/ml. The samp-
le was pre-weighed, UV-treated and swollen overnight
in 0.1 M HEPES pH 7.4. Subsequently the matrices
were immersed into 0.1 ml of the FGF-2 solution for 24
h at 4 °C. After withdrawing the solution, the remaining
matrices were washed once with 0.5 ml of saline, im-
mersed into 0.1 ml of F-10 («Sigma»), chosen as a re-
lease medium, and incubated at 37 °C. In certain time
intervals the immersion medium was changed with the
same volume of fresh one. The FGF-2 content in the
matrices and media was analyzed by SDS-PAGE. The
quantity of FGF-2 in the samples studied was determi-
ned by densitometry of polyacrylamide gel electropho-
regrams. For this purpose the SDS-PAGE gels were
stained with Coomassie Brilliant Blue according to [9],
documented by ChemiDoc™ XRS+ System («Bio-
Rad», USA), and subsequently analyzed with «Image
Lab Software™» («Bio-Rad»).

Cell culture. The CHO-K1 cell line was obtained
from the Russian cell culture collection [12]. The cells
were cultured in the F10 culture medium («Sigma-Al-
drich»), containing 10 % of fetal calf serum («Sigma»),
100 U/ml of penicillin, and 100 pg/ml of streptomycin.
In order to test the viability and distribution of the mam-
malian cells cultured on developed scaffolds, 1-10° CHO-
K1 cells were seeded on 1 cm’ of a porous scaffold.

Scanning electron microscopy (SEM). The freeze-
dried samples of developed matrices were coated with a
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10-30 nm thick gold-metal layer to improve the surface
conductivity, and examined for morphological details
with the Jeol JSM 35C and Jeol JSM 6060LA scanning
electron microscopes (Tokyo, Japan).

Confocal microscopy. The morphological details of
the matrices in solution and distribution of the seeded
cells were studied using the confocal scanning micro-
scope AXIOSKOP-2 ZEISS with the laser scanning
program LSM 510 PASCAL («Carl Zeiss», Germany).

AFM imaging. All measurements were performed
using the AFM NT-206 atomic force microscope (Bela-
rus). The images were obtained using triangular silicon
cantilevers (NSC 11) with a nominal spring constant of
48 N/m, frequency 372.329 kHz. Tip curvature radius
was < 10 nm. The scaffolds were equilibrated with 0.1
M HEPES (pH 7.4), and then placed on a glass substrate
and incubated in air for 2 days at room temperature be-
fore the study.

CAM assay. The ability of the developed functiona-
lized scaffolds loaded with FGF-2 to induce angiogene-
sis in vivo was studied with a modified chorioallantoic
membrane (CAM) assay according to the method des-
cribed by Wilting et al. [13].

Results and discussion. The main common feature
of the proteins belonging to the FGF family is their ex-
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Fig. 1. Scheme of cross-linking heparin
with adipic dihydrazide. EDC — water-so-
luble carbodiimide

traordinarily high affinity to heparin and heparin sulfa-
te proteoglycans [14, 15 ]. The binding of FGF-2 to he-
parin sulfate proteoglycans on the cell surface serves as
a mechanism for creating storage site for the proteins,
from which they could be released when needed. Addi-
tionally, the interactions with heparin could stabilize
these proteins and potentiate their angiogenic activity.
Therefore we chose to develop a carrier for FGF-2 based
on heparin.

Heparin is a natural water-soluble polysaccharide
consisting of the units of glucuronic acid and sulfoglu-
cosamine. The presence of numerous carboxylic groups
allows easy functionalization and modification of this
polymer. We have developed a convenient protocol for
its cross-linking, based on the reaction of heparin with
a known bifunctional reagent, adipic dihydrazide (10—
20 % by weight), in the presence of water-soluble carbo-
diimide in aqueous medium at slightly acidic pH. The
reaction proceeds via the formation of hydrazide bonds
between the COOH functions of the polysaccharide
chains and a cross-linking reagent (Fig. 1). The process
is fast and results in the formation of a sufficiently stab-
le heparin hydrogel which is insoluble in water. The op-
timal properties of the polymer were achieved at a con-
tent of 15 % of the cross-linking reagent.



DEVELOPMENT OF SCAFFOLDS FOR THE DELIVERY OF FGF-2

A
S 120
s
8 100
kS
< 80
£ 60
S 40
-
T 20
O

0

0,017 0,034 0,069 0,13 0275 0,55 1,1 22 44
B Polymer concentration, mg/ml
1 2 3 4 5 6 7

Fig. 2. A — dose-response viability of CHO-K1 cells cultured in the
presence of developed polymer detected by MTT-assay. The viability
of CHO-K1 cells after 72 h treatment with polymer. Each value was
calculated from three samples and presented as mean + SD; B —
analysis of FGF-2 loading on the developed polymer by SDS-PAGE
(after 1 h of incubation at 22 °C ) (/ — supernatant; 2—5 — pelleted poly-
mer; 6—7 — recombinant FGF-2 marker

The influence of the developed polymer on the via-
bility of mammalian cells was studied with the CHO-
K1 cell line. The viability of these cells was assayed af-
ter 72 h of exposition with a common MTT assay, which
demonstrated that the polymer did not substantially
change the metabolic activity of CHO-K1 cells at any
concentration tested (Fig. 2, A). The incubation at the
highest polymer concentration (4.5 mg/ml) slightly
reduced the cell viability, though not significantly. For
future studies we have chosen the concentrations below
1 mg/ml. FGF-2 loaded on the obtained polymer binds
effectively after 1 hour of co-incubation in saline at 22
°C (Fig. 2, B). The maximum binding capacity under
these conditions was observed at the polymer concent-
ration of 12—-15 pg of FGF-2 per 1 mg of the polymer.
An efficient scaffold should be highly porous with large
surface/volume ratio to accommodate a large number of
cells in order to facilitate the migration of the cells into
the functionalized collagen scaffold containing FGF-2.
This allows neovascularization of the matrix and stabi-
lizes the formation of vessel network. The functionali-
zed collagen scaffold was created by freeze-drying the
collagen I solution containing the developed polymer
for the FGF-2 incorporation. The scaffolds were analy-
zed by SEM and SCLM to study the structure obtained
in dried state as well as in solution. For the SCLM stu-
dies the scaffolds were firstly sterilized by UV, immer-
sed in 0.1 M HEPES buffer (pH 7.4) for 24 h at 4 °C,

and then equilibrated with the F-10 culture medium for
additional 24 h. These data revealed that the scaffold had
a layered structure with pores connecting the layers. The
average pore size of the developed scaffolds varied in
the range of 76— 150 um (Fig. 3, 4, C) in dried state, and
did not change significantly in solution. The distribution
of the polymer particles in the developed scaffold was
studied by AFM and SCLM. Both demonstrated that
the particles are located densely within the scaffold. The
analysis of AFM images revealed the presence of large
aggregates consisting of separate granules (the size va-
ried between 165 and 364 nm), and their distribution
pattern was not uniform (Fig. 3, B).

As shown before, the scaffold swelling properties
significantly influence cell behavior (namely adhesion,
growth, differentiation), and directly affect the diffusion
rate for any nutrients necessary for the growth of cells
within the scaffold. The swelling studies demonstrated
that the water uptake by the scaffolds was 1569 %. which
indicates that the scaffold will provide appropriate
conditions for the cells and easily absorb fluid and do-
nate moisture if placed directly into the wound. A high
water content could be explained by the hydrophilic na-
ture of both the collagen and the heparin-based hydro-
gel, as well as by a high porosity of sponges which are
meant to hold the water inside the pores. The heparin-
based polymer within the scaffolds preserved its ability
to incorporate the recombinant human FGF-2. The ave-
rage binding capacity under these conditions was 50
ug/cm’ of the scaffold, while unmodified collagen scaf-
fold was able to absorb only 0.94 pg/cm’ of the protein
due to the retention of FGF-2 within the pores.

As stated before, in order to induce angiogenesis in
the ischemic tissue efficiently, the carrier has to release
FGF-2 for a long time at the site of its administration.
We have studied the FGF-2 release from the developed
scaffold immersed in 0.1 ml of F-10 chosen as a relea-
se medium, and incubated at 37 °C. Fig. 3 shows a re-
lease profile for FGF-2 from the developed scaffold as
a cumulative amount of the protein released in time. All
samples exhibited a fast release of FGF-2 in the first 3 h
of incubation, and then a relatively steady and slow re-
lease for up to 3 days (72 h) (Fig. 4). The initial fast
release has to be attributed to FGF-2 trapped inside the
pores of the scaffold, but not directly adsorbed onto the
developed polymer. It could be confirmed by the fact
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Fig. 3. Images of developed functionalized collagen scaffolds: 4 — SEM image (scale bar = 100 um); B — AFM image: interior view of scaffold; C —
SCLM image (double staining-acridine orange and ethidium bromide, scale bar = 20 um); the polymer particles are stained in red
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Fig. 4. Accumulative release of FGF-2 from developed functionalized

collagen scaffolds in vitro. Scaffolds were incubated in F-10 medium

at 37 °C. Each value was calculated from 9 samples

Fig. 5. 4— SCLM image of double stained CHO-K1 cells cultivated on
the developed functionalized scaffold; B — partial cross-section of the
collagen scaffold with CHO-K1. Culture time was 6 days (Staining
DAPI + Thiazine red)
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that we have observed a complete release of FGF-2 from
the control scaffold made only of collagen during the
first 3 h of incubation.

To assess the ability of the developed scaffolds to
promote cell adhesion and growth, the CHO-K1 cells
were seeded on the scaffold. The cells were incubated
in the complete culture medium for 6 days. The cells be-
came attached to the scaffold in 30 min, and after 6 days
in culture a significant increase in cell number was ob-
served, which proved their proliferative activity (Fig.
5, A). The data obtained by SCLM revealed that the
colonization of the scaffold extends not only over the
surface, but also inside the matrix (Fig. 5, B). Thus, on
the basis of data obtained one can suggest that the deve-
loped functionalized collagen scaffolds would support
not only cell growth, but also migration and coloniza-
tion of the scaffolds both in vitro and in vivo.

It is generally known that FGF-2 has a powerful
pro-angiogenic activity, but could potentially lose this
biological activity when loaded onto the different carri-
ers. Thus, the ability of the developed functionalized
scaffolds loaded with FGF-2 to induce the angiogene-
sis in vivo was studied by a CAM assay. The angioge-
nic activity of the scaffolds was determined after three
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Control

Experiment

Fig. 6. Angiogenic activity of the developed scaffold with FGF-2 in
the CAM assay. The developed scaffolds containing FGF-2 were pla-
ced on CAMs of the 8-day-old chicken embryos. Places of application
are indicated by arrows. Empty scaffold was used as a negative control

days of incubation. The controls treated with an empty
vehicle showed a large blood vessel without any signi-
ficant sprouts. In contrast, a vehicle loaded with 1 pug of
FGF-2 elicited a strong angiogenic response (Fig. 6),
which leads to the conclusion that FGF-2 loaded on the
developed scaffold did not lose its biological activity,
and can be tested for the induction of angiogenesis in vi-
vo in different ischemic animal models.

Conclusions. The present study focuses on the de-
velopment of a functionalized collagen scaffold for the
delivery of FGF-2, which can not only provide a sus-
tained release of the growth factor in vivo but also help
to stabilize the newly formed vessels. The FGF-2 poly-
mer carrier based on modified cross-linked heparin has
been developed, and the functionalized collagen scaf-
folds with layered structure, interconnected by the po-
res of 76—150 pum in diameter were produced by the
freeze-drying technique. The swelling tests showed a
high water uptake of the scaffolds, which indicates that
the scaffold is able to provide appropriate conditions
for the cells.

The study revealed that the average binding capa
city, under the conditions that were tested, was 50 pg/
cm’ of the scaffold. All samples exhibited a fast release
of FGF-2 in the first three hours of incubation, and then
a steady and slow release for up to three days. The de-
veloped functionalized collagen scaffolds supported
not only cell growth, but also migration and coloniza-
tion of scaffolds in vitro. Lastly, the vehicles loaded
with FGF-2 strongly elicited an angiogenic response in
the CAM assay.

Thus, these results indicate that the proposed func-
tionalized collagen scaffolds loaded with FGF-2 can be

used as a vehicle for the sustained delivery of the growth
factor both in vitro and in vivo.
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CTBOpEHHS Ta JOCIIHKEHHS BIACTUBOCTEH MOPUCTUX

(hyHKI110HaTI30BaHUX KOJMAareHOBUX ckadouaiB st gjocraBku FGF-2

S1. O. Tloxonenko, M. JI. Uernpikua, JI. B. [y6ei, 1. 5. [dy6eit,
O. B. Mommsens, €. B. Hlenyasko, C. I1. Hlnunsosa,
M. L. [lertsipeBa, B. A. Kopaiom

Pesrome

Mema. Po3pobka nopucmux QyHKyioHani308aHux KOJlA2eHOBUX CKA-
ondis ons 0ocmaexu FGF-2, a makooi eusuenHs ixHix enracmugocmeti
in vitro ma in vivo. Memoou. ITopucmi xonazenogi ckagonou ooep-
HCAHO MEMOOOM NIOPINLHO20 CYONIMAYIUHO20 BUCYULYBAHHS POZUUHY
Konazeny muny I, akuti Micmums cmeopeHutl noaimep Ha 0CHO8I MOOU-
@ixosanoeo swumoezo cenapuny. Craghondu ananisyeanu memooamu
CEM, ACM i JICKM. Anciozcenni enacmusocmi KoiazeHO8UX cKagho-
0ig, ski micmame FGF-2, eusuanu Ha mooeni XOpioH-AianmoicHOi
membpanu embpiona kypuamu. Pesynomamu. /[{ani, ompumani memo-
oamu CEM i JICKM, cgiouams npo me, ujo ooepaicanuii ckagpond mae
Nepeaiclo wapysamy CmpyKkmypy 3 nopamu, sxki 3'conyroms pizni wia-
pu. Cepeoniil posmip nop eapirwe 6i0 76 0o 150 mxm. Craghorou, 0o
CKAA0Y AKUX 86X00UMb CMeopeHull noimep, 30amui adcopbysamu pe-
kombinanmuuu FGF-2 nroounu. 3anpononosani komnosuyii cmumyiio-
10Mb aHeio2ene3 Ha MoOeil XOPIOH-ANAHMOICHOT MeMOparu emopiona
xypuamu. Bucnosku. Po3pobieni nopucmi ghynkyionanizosani konaee-
nosi ckagponou, axi micmamo FGF-2, modcna suxopucmogysamu sAx
3acib 01151 00CMAsKU 0AHO20 POCMOBO20 (hakmopa, wjo 3abe3neuye no-
20 mpusaie USLIbHeHHs SK I Vitro, mak in vivo.

Knrouosi crnosa: eiopoeens, pakmop pocmy gibpobracmis-2, anzio-
2eHe3, Konaze, 2enapuH.

Co3aHue U U3y4eHUe CBOWCTB MOPUCTHIX (DyHKIIMOHATIH3UPOBAHHBIX
KoJITareHoBBIX cKkad oo uis noctaBku FGF-2

s1. A. Tloxonenko, M. JI. Yersipkuna, JI. B. lyoeit, W. f. [yoei,
E. B. Moumner, E. B. lllenyapko, C. I1. Illnuneas,
M. U. [ertsapesa, B. A. Kopaiom

Pestome

Lens. Paspabomxa nopucmuix QyHKYyuoOHAIUIUPOGANHBIX KONNASEHO-
8b1x ckaghgonoos ons docmasku FGF-2 u uzyuenue ux ceoucme in
vitro u in vivo. Memoowt. [lopucmele konnacenogoie ckapghondvt no-
JyHeHbl MemooomM AUOPUILHOU CYOTUMAYUOHHOU CYWKU pACmeopda
Koniaeena muna I, cooepaicawe2o co30anHblil ROIUMEP HA OCHOBE MO-
ouuyuposannoeo cuiumoeo cenapuna. Cxagh@onovl anaruzuposaiu
memooamu COM, ACM u JICKM. Aneuocennvie ceoticmea paspabo-
MAHHBIX KOAIA2EHOBLIX CKAPon0086, codepocawux FGF-2, uzyuanu
Ha MoOenu XOPUOH-ANTAHMOUCHOU MeMOPAaHbl KYPUHO20 IMOPUOHA.
Pesynomamol. /lannvie, nonyuennvie memooamu COM u JICKM, ceu-
0emenbCmeyonm 0 mom, 4mo CO30aHHbII CKaP PO 6 OCHOBHOM UMe-
em CIOUCmylo CmpyKmypy ¢ nOpamu, cOeOUHIIOWUMU PA3Hble CLOU.
Cpeonuii pazmep nop eapwvupyem om 76 0o 150 mxm. Ckaghgponovt, co-
oeparcawjue noryHeHHbLI NoIUMep, CROCOOHbL ACOPOUPOBAMb PEKOM-
ounanmuwiii FGF-2 uenosexa. IIpednoscentvle KoMnouyuu Cmumy-
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AUPYIOM AHSUO2EHE3 HA MOOENU XOPUOH-ATNAHMOUCHOU MEMOPAHbL K-
punozo smopuona. Beieoowt. Paspabomannuvle nopucmole QyHkyuona-
AUBUPOBAHHBIE KOJIA2eH08ble cKagh@onodvl, codeprcauue FGF-2,
MOMHCHO UCNONBL30BAMb KAK CPEOCME0 OJisl 00CMABKU OAHHO20 POCHO-
8020 paxkmopa, obecneyusaiyee e2o ONUMeNbHOe 8blC80OONCIEH e,
Kak in vitro, mak in vivo.

Knroueswie cnosa: eudpozens, paxmop pocma ¢ubpodiacmos-2,
aHeuozenes, KoJuNazeH, 2enapun.
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