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Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyro-
syl-tRNA synthetase (MtTyrRS). Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were
constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All
complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD) simulations in solution.
Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active
center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds
and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyro-
sine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive
Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the en-
zyme evidences a significant conformational mobility of the active site.

Keywords: tyrosyl-tRNA synthetase, Mycobacterium tuberculosis, substrate, hydrogen bond, molecular dyna-
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Introduction. Tyrosyl-tRNA synthetase from M. tuber-
culosis (MtTyrRS) belongs to a class I of aminoacyl-
tRNA synthetases (aaRSes) that catalyze the attach-
ment of tyrosine to its cognate tRNA"™" at the preribo-
somal protein synthesis step.

The catalytic domain of M¢TyrRS has the Ross-
mann fold and the active center has the HIGH and
KMSKS (KFGKS in M¢TyrRS) motifs that catalyze the
amino acid activation with ATP [1-3]. M¢TyrRS is a
promising antibiotic target for discovering and deve-
loping new selective inhibitors [4—7]. In general, the
aminoacylation reaction has two steps: L-tyrosine is ac-
tivated by ATP, forming the enzyme-bound tyrosyl-
adenylate intermediate, and at the second step of the re-
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action, the activated tyrosine transfers to tRNA™ to
form the tyrosyl-tRNA"™" complex [1-3].

The inhibitor SB-219383 and its analogues are a
class of specific inhibitors of bacterial TyrRS, but their
polarity prevents the transport across the bacterial cell
wall. SB-219383 shows the competitive inhibitory acti-
vity against Staphylococcus aureus TyrRS (K, =1C,, =
= 0.6 nM for S. aureus TyrRS; 1C,, = 22 uM for mam-
malian TyrRS) and a weak anti-bacterial activity against
some Streptococcal strains in vitro (MIC = 32 ng/ml)
[8, 9]. Other pyranosyl and carbocyclic analogues of
SB-219383 have been synthesized to reduce its overall
polarity and thus improve its penetration through the
bacterial cell wall, although only one compound exhi-
bits a weak antimicrobial activity against Streptococ-
cus pyogenes (MIC 8 mg/ml) [10].
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The active sites of bacterial aaRSes have being stu-
died for years. The 3D structures of TyrRS from E. coli
(1VBM, 1 VBN, 1WQ3, 1WQ4, 1X8X) [11, 12], Ther-
mus thermophilus (1H3E, 1H3F) [13], S. aureus (1J11,
JIJ, UIK, 1JIL) [14], Bacillus stearothermophilus
(1TYD, 2TS1, 3TS1, 4TS1) [15], and M. tuberculosis
(2JAN) [16] were solved by X-ray crystallography. Tyr
RS [17-20, 26], MetRS [21], AspRS [22, 23], LysRS
[24] and TrpRS [25] were studied by the MD simu-
lations. The structure of full-length Bos faurus TyrRS
was modeled and analyzed [26]. Mammalian TyrRS was
studied by fluorescence spectroscopy [27].

Since the different bacterial TyrRSes have homolo-
gous catalytic domains, their active sites are similar [4].
According to the data of the Protein database of NCBI,
the MtTyrRS active center (H37Rv strain) is formed by
following 20 residues: Tyr36, Gly38, Phe39, Asp40,
His47, Gly49, His50, Tyr171, GInl75, Aspl78, GIn191,
Gly193, Gly194, GIn197, Leu223, Val224, Lys231,
Phe232, Gly233, Lys234.

In this paper, we have investigated the mechanisms
of the substrates interaction with the M¢TyrRS active
site. Specifically, we have studied M¢TyrRS in the comp-
lexes with L-tyrosine, ATP and tyrosyl-adenylate by
100 ns MD simulations. The data on dynamic binding of
the substrates in the active center are important to de-
sign new inhibitors. The search for and development of
inhibitors based on dynamic pharmacophores may help
to find a new specific inhibitor of MtTyrRS, non-toxic
to humans.

Materials and methods. /nitial structures. Structu-
re of the M¢TyrRS dimer in free state was prepared ac-
cording to the scheme described in our previous work
[28]. The crystallographic structures of complexes of
bacterial TyrRSes were used to build the M¢TyRS struc-
ture in the complexes with substrates. To construct the
complexes we superimposed the atomic coordinates of
the protein — 2JAN [16] and ligand (Tyr) — 1X8X (E. co-
li TyrRS) [11], keeping the protein structure and Tyr in-
variable. The same strategy was applied to generate the
complex of M¢TyrRS with ATP (1H3E — 7. thermo-
philus TyrRS) [13], and with the tyrosyl-adenylate
intermediate (1VBM — E. coli TyrRS) [11]. In the latter
case we replaced the atom S by P, to obtain the tyrosyl-
adenylate but not its analogue.

158

Molecular dynamics. MD simulations were per-
formed using the GROMACS 4.5 package [29]. Each
system was simulated for 100 ns with the Amber
ff99SB-ILDN force field [30] and three times with the
CHARMM?27 force field [31]. The ligand topologies
for the Amber ff99SB-ILDN force field were prepared
by using the acpype (AnteChamber PYthon Parser in-
terfacE) scripts [32], based on the antechamber suite.
The ligand topologies for the CHARMM?27 force field
were prepared by using the SwissParam web-service
[33]. The protein was placed in a triclinic water box
with the minimum distance between M¢TyrRS and the
box wall of 1 nm. The explicit TIP3P water molecules
were used. All simulations were performed under perio-
dic boundary conditions. Na" and CI” counterions were
added to neutralize completely the system at 150 mM
NaCl salt concentration. Each system was energy-mi-
nimized and then equilibrated with positioning restraints
on heavy atoms of the protein before the simulations
were initiated. The leap-frog integration algorithm was
used, with a 2 fs timestep. All bond lengths were con-
strained using the LINCS algorithm. Unless otherwise
stated, the long-range electrostatic interactions were
computed using the fourth-order particle mesh Ewald
(PME) method with a Fourier spacing of 0.16 nm. The
real space coulombic interactions and the pair-list calcu-
lations were set to 1.0 nm. A twin-range cutoff of 1 nm
was used for the Van der Waals interactions. The tempe-
rature and pressure were maintained by coupling the
temperature and pressure baths using the V-rescale and
Parrinello-Rahman methods with relaxation times of
0.1 and 0.5 ps, respectively. A temperature of 310 K
and pressure of 1 atm were used. All MD simulations
were performed using the services of the MolDynGrid
virtual laboratory (http://moldyngrid.org), at the ICYB
and ISMA clusters of the Ukrainian National Grid envi-
ronment [34-36].

Graphical and structural analysis. The PyMOL pro-
gram was used for the visualization and graphical struc-
ture analysis [37]. The Root Mean Square Deviations
(RMSD) and Root Mean Square Fluctuations (RMSF)
were calculated using the g_rms and g_rmsf programs
of GROMACS, respectively. Hydrogen bonds were
calculated with g hbond program. The LigPlot+ pro-
gram was used for schematic visualization of the hydro-
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Fig. 1. RMSD (4) and RMSF
(B) of C_atoms from the ini-
tial structure of MtTyrRS in
the complex with tyrosyl-
adenylate intermediate du-
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gen bonds between the substrate and the residues of the
active center [38].

Results and discussion. To check the global struc-
tural stability in the course of MD simulations the RMSD
and RMSF of C-alpha atoms of M¢TyrRS in complex
with tyrosyl-adenylate were monitored (Fig. 1). RMSD
increase up to ~ 10 ns, and then become more stable (~ 3—
7 C). After ~70 ns of simulations RMSD increase again
up to~9.3 C. This is due to high mobility of the C-termi-

200 300 400 500 600 700 800 900 rng 100 ns MD simulations

Caalpha atom

Fig. 2. Hydrogen bonds bet-
ween the tyrosine and resi-
dues of the MtTyrRS active
center (4) and schematic re-
presentation of H-bonds bet-
ween the tyrosine and resi-
dues of the active center (B)

Fig. 3. ATP and residues of
the active center that form
H-bonds. Lys231 and Lys
234 (magenta) of the cata-
lytic KFGKS motif (4) and
schematic representation of
H-bonds between the ATP
and residues of the active
center (B)

nal domains [20]. RMSF show that besides the C-mo-
dules, the catalytic KMSKS loops are also highly
mobile elements of the protein [28].

In order to evaluate the substrate binding in the
MtTyrRS active center the H-bonds were calculated
with their occupancy over the entire 100 ns of MD simu-
lations (Table). L-tyrosine in the active site forms H-
bonds to Tyr36, Asp40, GInl175, Aspl178 and two H-
bonds with GIn197 (Fig. 2). Occupancy of these H-

159



MYKULIAK V. V., KORNELYUK A. I.

A

bonds is about ~ 30-40 % of 100 ns of MD simulations
for residues of loops, and up to 99 % of 100 ns of MD
simulations for residues of a-helixes and 3-strand of the
enzyme active center. It is worth to note, that the L-ty-
rosine binding pocket is negatively charged because of
Asp40 and Aspl178.

For the binding of ATP in the active center, Lys
231, Phe232 and Lys234 of the catalytic KFGKS se-
quence are important. The positively charged Lys231
and Lys234 interact with the negative phosphate groups
of ATP. Phe232 and Lys234 have H-bonds with ATP.
Besides, one H-bond with ATP is formed by His50, and
two bonds — by Val224 (Fig. 3). Due to the high mobi-
lity of the catalytic loop, the occupancy of each H-bond
to ATP is not more than ~ 50 % of 100 ns of MD simu-
lations (Table). The catalytic loop catalyzes the forma-
tion of the tyrosyl-adenylate intermediate by interac-
ting with the phyrophosphate moiety of ATP [39].

The tyrosyl-adenylate intermediate occupies entire
pocket of the active site interacting with the catalytic

Pocket of the active center

ATP binding site

L-tyrosine binding site
Aspl78

Fig. 5. Schematic representation of the M¢TyrRS active center. The L-
tyrosine binding site has negatively charged Asp40 and Asp178. The
ATP binding site has negatively charged Asp196 and positively char-
ged Lys231 and Lys234 of the catalytic sequence

160

Fig. 4. Hydrogen bonds bet-
ween the tyrosyl-adenylate
and residues of the MtTyrRS
active center (4) and schema-
tic representation of H-bonds
between the tyrosyl-adenyla-
te and residues of the active
center (B)

Hydrogen bonds between substrates and the MtTyrRS active center

Hydrogen bonds ‘ Distance, C ‘ Occupancy, %
M(TyrRS-Tyr
Tyr36-OH-OH 2.82 75.41
Asp40-OD2-HIN 2.71 30.42
GIn175-OE1-H2N 2.73 47.56
Aspl178-OD2-HO 2.98 99.21
GIn197-NE2H-0C2 2.89 37.74
GIn197-OE1-H3N 2.87 39.56
MitTyrRS-ATP
His50-NE2H-02' 3.28 20.00
Val224-O-H20N6 2.81 47.47
Val224-NH-N1 3.03 49.71
Phe232-O-HIN6 2.86 18.70
Lys234-NZHZ2-02A 2.61 43.68
MtTyrRS-Tyr-AMP
Tyr36-OH-OH 3.11 33.44
Gly38-O-H240AE 2.89 20.01
Asp40-NH-OAD 3.04 88.37
GInl175-OE1-HIN 2.69 89.49
Aspl178-OD2-HO 2.71 99.07
Gly194-NH-O2' 2.67 26.89
Aspl196-OD1-HO3' 2.62 52.80
GIn197-NE2H-O5' 3.23 21.87
GIn197-OE1-H2N 2.86 37.08
Val224-O-HIN6 3.01 60.70
Val224-NH-N1 3.28 66.12
Phe232-O-H2N6 3.12 52.38

N ot e. For each hydrogen bond the percentage occupancy was cal-
culated.
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loop (Fig. 4). The substrate forms H-bonds with resi-
dues that interact with other substrates (tyrosine and
ATP) and with Tyr38, Gly194 and Asp196 (Table). H-
bonds occupancy reveals stability of the tyrosyl-ade-
nylate in the enzyme active center. In general, the Mt
TyrRS active center can be divided into two parts: the
L-tyrosine binding site and the ATP binding site (Fig.
5). The L-tyrosine binding site involves the negatively
charged Asp40 and Asp178. The ATP binding site con-
tains the negative Asp196 as well as the positive Lys
231 and Lys234 of the universal catalytic KMSKS mo-
tif of the aaRS of class . In bacterial TyrRS, the Lys
231 and Lys234 of the catalytic KMSKS sequence
stabilize the intermediate state for the tyrosine activa-
tion by interaction with the phyrophosphate moiety of
ATP substrate [39].

Conclusions. In this study, we have investigated the
mechanisms of the substrates interaction with the active
center of MtTyrRS in solution. We have performed 100
ns MD simulations of the MtTyrRS dimer in complexes
with L-tyrosine, ATP and tyrosyl-adenylate intermedi-
ate. The L-tyrosine binding site is negatively charged,
whereas the ATP binding site has the positively char-
ged Lys231 and Lys234 of the catalytic sequence. The H-
bonds occupancy reveals significant conformational
mobility of the active center of M¢TyrRS in solution.

MexaHi3M B3aemMoii cyOCTpaTiB 3 aKTHBHUM LIEHTPOM THPO3UII-
TPHK cunrerasu Mycobacterium tuberculosis 3a nanumu

MOJIEKYJISIPHOT IMHAMIKI
B. B. Mukymsk, O. 1. Kopuenrok
Pesrome

Mema. Jlocrioumu mexanizmu 63aemo0ii cybcmpamis peakyii amino-
ayuIOBants 3 AKMUSHUM yenmpom muposur-mPHK cunmemasu ey-
b6akmepii Mycobacterium tuberculosis (MtTyrRS). Memoou. Cynepno-
suyicio MtTyrRS 3 kpucmanoepagiunumu cmpykmypamu 6axmepiii-
nux TyrRS nobyoosano komnnexcu 3 muposurom, muposunom, ATD i
muposunadeniramom. Komnaexcu MtTyrRS 3 cyocmpamamu euguanu
MemoooM MOOeN08aH A MONeKYAAPHOI ounamixu (M/]) y posuuni. Pe-
3ynemamu. Ilokazano 600HesI 36 3K Midic cyocmpamam i akmugHum
yenmpom MtTyrRS ma ixuio cmabinenicme y npoyeci M/]. Cmabine-
nicmo AT® 6 akmugnomy yenmpi 3a0e3neuyenves 0OHESUMU 36 A3KA-
MU, @ MaKoic elekmpocmamudnumu 63aemodismu 3 Lys231 ma Lys
234 kamanimuunozo momusy KFGKS. Bucnoeku. /linanxa 36 ’a3yean-
HA L-mupo3uny 6 axmuerHomy yenmpi gpepmenmy € He2camusHo 3apso-
Jrcenor, modi sk Oinanka 36 'sa3yeants AT® mae nozumusHo 3apsodice-
ui Lys231 i Lys234 kamanimuunoi nociiooenocmi KFGKS. IIpoyenm-
He CnieBIOHOWIeHH MPUBANOCMI ICHYBAHHS 60OHEGUX 36 A3KI6, SKI
Gopmytomscs midic cybcmpamamu ma pepmenmom, 00 3a2aibHO20

uacy mooenweanns MJ] ceiduumes npo Koupopmayiiny pyxausicmo
AKMUBH020 Yenmpa.

Knrouosi cnosa: muposun-mPHK cunmemasa, Mycobacterium tu-
berculosis, cybcmpam, 600Hesull 36 130K, MOIEKYIAPHA OUHAMIKA, 2PUO.

MexaHn3M B3aUMO/ICHCTBHS CyOCTPATOB ¢ AKTHBHBIM LIEHTPOM
tupo3un-TPHK cunrerasst Mycobacterium tuberculosis no

JTAHHBIM MOJIEKYJISIPHOH ANHAMHUKH
B. B. Muxkymsk, A. U. Kopraeniok

Pestome

Lens. Uccnedosamov mexanuzmol 3aumooeiicmeus cyocmpamos pe-
AKYuU AMUHOAYUAUPOBAHUS C AKMUBHBIM YeHmpom muposunr-mPHK
cunmemasvl 3y6axkmepuu Mycobacterium tuberculosis (MtTyrRS). Me-
moowt. Cynepnosuyueti MtTyrRS ¢ kpucmannoepaghuueckumu cmpyk-
mypamu 6axmepuanvhelx TyrRS nocmpoenvt komniexcol ¢ muposu-
Hom, muposzunom u AT® u mupozunadenuramom. Komnaexcot MtTyrRS
¢ cybcmpamamu u3yuanu Memooom CUMyaAAayud MOJIEeKYIAPHOU OUHA-
muxu (M/]) 6 pacmeope. Pesynemamet. [lokaszanvl 6000pooHble C8:3U
Mmedncdy cybempamamu u akmueHolm yenmpom MtTyrRS u ux cmabuno-
Hocmb 6 npoyecce MJl. Cmabunvnocme AT® 6 akmusnom yenmpe ode-
cneuusaemcs 6000POOHBIMU CEAZAMU, d MAKIHCE DIEKMPOCMAmuyec-
Kumu e3aumooeticmeusmu ¢ Lys231 u Lys234 kamanumuueckozo mo-
musa KFGKS. Bwieoowvr. Caiim ceéasviganusn L-mupo3una ¢ akmuenom
yenmpe ¢hepmenma 3apsdicer OmMpuyamenbto, 6 mo epems Kax yud-
cmok ceazvisanus AT® umeem nonoscumenvuvie Lys231 u Lys234 ka-
manumuyeckou nociedosamenvhocmu KFGKS. IIpoyenmmnoe coom-
HOweHue ONUMeIbHOCMU CYUeCma8o8aniis 6000pOOHbIX Ces3ell, Pop-
MUPYIOWUXCS MEAHCOY CyOcmpamamu u hepmMeHmoM, K obuemy speme-
nu mooenuposanusi MJ/[ ceudemenvcmsyem o KOHGOPMAYUOHHOU NOO-
BUICHOCIU AKMUBHO20 YEHMPA.

Kniouesvie cnosa: muposun-mPHK cunmemasa, Mycobacterium
tuberculosis, cyocmpam, 6000pooHas c6s3b, MOACKYIAPHAS OUHAMU-
Ka, epuo.
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