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Aim. To investigate the thermodynamic characteristics of complexes of calf thymus double-stranded DNA with
methylene blue (MB), ethidium bromide (EtBr) and Hoechst 33258 (H33258). Methods. The binding of MB with
double-stranded DNA was observed by UV-melting method. Results. Several types of MB binding to DNA-
intercalating, semi-intercalating and electrostatic with DNA phosphate backbone, have been revealed at low
concentrations of Na' (2 mM). At high concentrations of cations and low ratios of r, = [ligand]/[DNA] (<0.03),
the molecules of ligand semi-intercalate into the space between adjacent bases. At higher concentrations of li-
gand the main mode becomes electrostatic binding of MB to DNA phosphate groups. Conclusions. The com-
parison of thermodynamic characteristics of DNA-MB complexes with those of EtBr and H33258 indicates that
there is more than one mode of binding ligands to DNA: besides nonspecific, external electrostatic binding with

phosphate groups, intercalation and semi-intercalation modes of interaction coexist.

Keywords: UV-spectrophotometry of DNA melting, methylene blue, intercalation, semi-intercalation.

Introduction. Investigation of peculiarities of the comp-
lex formation of natural and artificially synthesized li-
gands with DNA is of actual importance since it per-
mits to reveal the mechanisms of interaction and their
specificity in certain regions of nucleic acid [1-7]. No-
wadays the ligands noncovalently binding with DNA
are divided into two classes — intercalators and groove
binding compounds [8—16]. However, the results of theo-
retical and experimental investigations show that depen-
ding on the external medium conditions several ligands
may bind to double-stranded (ds-) or single-stranded
(ss-) DNA in more than one mode (multimodal ligands)
[17-25]. From this point of view methylene blue (MB,
Fig. 1), which is considered to be an alternative to the
classical intercalator ethidium bromide (EtBr), repre-
sents a certain interest. This ligand is a photosensitizer
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and initiates the formation of singlet oxygen in solution
invoking different damages in DNA molecule [20].

A large number of works are devoted to interaction
of MB with DNA. It has been shown that depending on
the Na' concentration, nucleotide sequences, ligand con-
centration, MB may bind with DNA by different mecha-
nisms but at this moment there is no unambiguously
identified dominant type of binding with the biopoly-
mer and this problem remains an interesting matter of
discussion [3, 20].
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Fig. 1. The structure of methylene blue
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In the present work the interaction between MB and
calf thymus DNA (ctDNA) has been investigated using
UV-melting method. The comparison of thermodyna-
mic parameters of DNA-MB complexes with those of
EtBr and Hoechst 33258 (H33258) revealed more than
one binding type with DNA [8, 10, 20-26].

Materials and methods. The extra pure ctDNA
(«Sigmay, USA), MB («Aldrich», USA), NaCl, Na-
citrate (s. p.) were used in experiments. All prepara-
tions were used without additional purification.

The concentrations of DNA and MB were deter-
mined by absorption method taking into account the
following extinction coefficients: calf thymus — ¢,,, =
= 6600 M 'ecm™' (the concentration of DNA in solution
was ~ 50-60 uM), MB-¢,,, = 76000 M 'cm". The solu-
tions of preparations were prepared in SSC (1 x SSC
contains 0.15 M NaCl and 0.015 M Na-citrate (three-
substituted)). Investigations were carried out at 2 and
20 mM Na’, pH = 7.0.

Equipment. The melting of DNA complexes with li-
gands as well as spectrophotometric measurements were
carried out on spectrophotometer PYE-Unicam-SP8-
100 (England). The heating of solutions of complexes
was performed with the Temperature Programme Cont-
roller SP-876 Series 2. The quarts cuvettes with herme-
tically closed teflon plug with 3 ml volume and 1 cm op-
tic pathway length were used for spectrophotometric
measurements. The melting was realized at A = 260 nm
wavelength. The data were displayed on PC monitor
via a program elaborated in Lab VIEW medium. The
curves of melting were obtained as described in [21].

Results and discussion. The simple method of in-
vestigation of the interaction of different compounds
with DNA is the melting in ultraviolet region of light.
Applying this method the investigations of MB inter-
action with DNA were carried out at 2 and 20 mM Na”
concentrations in 0 <7, <0.33 (», = [ligand]/[DNA]) in-
terval of change at A = 260 nm. The melting curves (not
represented here) were obtained and the values of mel-
ting temperature — 7, of complexes were determined.
The plot of experimentally estimated values of the chan-
ges of melting points 8(1/7,) (6(1/T,)=1/T,—1/T,, whe-
re T, and T, are the melting temperatures of DNA and li-
gand-DNA complexes respectively) represented in Fig.
2 shows, that this parameter increases monotonously
with ligand concentration enhancement indicating the
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Fig. 2. Dependence of the change in melting temperature §(1/7,)10° of
the DNA-MB complexes on 7, at: 2 (/) and 20 mM (2) Na’
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Fig. 3. Dependence of the change §(AT/T,’)10° of the DNA-MB
complexes (a) on r, and DNA-EtBr complexes () at: 2 (/) and 20 mM
(2)Na'
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stabilizing effect of MB of ds-DNA structure at both
Na' concentrations.

The dependence of other parameter — change of mel-
ting interval width — (§(AT/T,’) = AT/T,> — AT,/ T,’, whe-
re AT, is the values of melting temperature of DNA; AT
is that of MB complexes with DNA respectively) on li-
gand concentration is represented in Fig. 3. The depen-
dence of (3(AT/T,’) on r, represented in Fig. 3, a (cur-
ves I and 2) corresponds to DNA-MB complexes at 2
and 20 mM Na'. For comparison the analogous curves
for EtBr are also represented in Fig. 3, b, (curves / and 2
at 2 and 20 mM Na' concentrations) [24]. Fig 3 shows
that for both EtBr and MB the (§(AT/T,”) (curves /) in-
creases at relatively low values of 7, and reaches its ma-
ximal values at 7, < 0.1. At further increasing of ligand
concentration this parameter starts to decrease in both
cases, for EtBr a decrease being sharper [10, 21-27].

We have shown earlier that at low concentrations in
case of EtBr the ligand molecules are mainly intercala-
ted into ds-regions of DNA and with the melting they
are redistributed from denaturized (ss-regions) to still
non denaturized ds-regions as a consequence of enhan-
cement of the dependence of (§(A7/T,) on r,. MB mo-
lecules behave in analogous way, since at low concent-
rations of salt the main mode becomes the intercalation
of these ligand molecules into ds-DNA [28].

At subsequent increasing of 7, in case of EtBr the
main binding mode is semi-intercalation at which the
ligand molecules show practically a similar affinity to
both ds- and ss-regions. As a result, the redistribution
of bound ligand molecules stops and the dependence of
(8(AT/T,?) on r, passing through the maximum decrea-
ses. Based on the revealing of analogous behavior in
case of MB we assume that in these conditions this li-
gand binds to DNA by semi-intercalation mode as well.
This conclusion is in good agreement with the reported
data [3, 29, 30].

On the other hand, curve 2 (Fig. 3, a) shows that
(S(AT/T,?) of DNA-MB complexes at 20 mM Na' in-
creases at low values of 7, and reaches the saturation at
r, <0.1. Such radical change in the dependence indica-
tes that this ligand binds to DNA in other modes. The
data in literature indicate that at low ionic strengths of
solution MB binds to GC-rich regions of DNA by inter-
calation as well. However, the basic interaction mode is
the AT-specific binding in one of DNA grooves which

practically does not depend on solution ionic strength
[20]. It should be mentioned that among ligands bin-
ding to DNA, the fluorescent dye for DNA and chromo-
somes — H33258 shows the pronounced AT-specificity.
Moreover this ligand, like netropsin and other lexitrop-
sines, is preferably localized in DNA minor groove, 7.

e. it is a groove binding ligand [31]. Our studies on the
melting reveal that at 20 mM Na' concentration the de-
pendence of (S(AT/T,?) on r, decreases getting negative
values (Fig. 4, b, curve 3) [8]. This is conditioned by the
fact that at binding to AT sequences the melting tempe-
rature of that sequences increases as a consequence of
which at relatively low concentrations of ligand (0 <7, <

<0,1) as well as at the melting DNA-H33258 comple-
xes behave themselves like double-stranded homopoly-
nucleotide the melting interval width of which is usual-
ly much less than in case of DNA with quasi-random se-
quences [27]. This is connected with the fact that DNA
is sufficiently heterogeneous system alike aperiodic
one-dimensional crystal that melts in wide tempera-
ture interval (AT ~ 10-15 °C) [32, 33]. At saturation of
binding sites of H33258, a decrease in AT of complexes
stopped and the (8(AT/T,’) dependence curve gets out
of plateau at », > 0.1, while the 5(1/7,) dependence on
r, in these conditions continues to increase indicating
that at 20 mM Na' concentration H33258 binds to DNA
in at least two modes — AT specific in minor groove at
low concentrations and electrostatically with phosphate
backbone groups at relatively high concentrations [8].
It is also obtained that at 2 mM Na' concentration
H33258 binds to DNA non specifically, moreover at 0 <
<r,<0.1 (8(AT/T,?) increases (getting positive values)
and at7,> 0.1 gets out of plateau (Fig. 4, b, curve 1) [8].
This is conditioned by the fact that at low ionic strengths
of solution the DNA double helix is more untwisted
and its diameter is longer than at relatively high ionic
strengths of solution [32, 33]. As a result, AT-specific
binding of H33258 in DNA minor groove becomes ther-
modynamically non profitable. In turn it results in radi-
cal change in the interaction mechanism of this ligand,
and the intercalation of hydrophobic bisbenzimidazo-
le groups of H33258 into the plane of base pairs beco-
mes preferable, since these groups are screened from
water [8]. Moreover, the piperazine and phenol groups
of H33258 are in polar surrounding that also promotes
the stabilization of complexes at low ionic strengths of
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Fig. 4. Dependence of the change in melting temperature 8(1/7,)-10°
(@) and §(AT/T,’¥10° (b) of the DNA-Hoechst 33258 complexes on 7,
at: 2 (1), 4 (2) and 20 mM (3) Na’

solution. Therefore at non specific (intercalation) binding
mode of H33258 to DNA, AT of complexes increases, at
AT specific binding mode — decreases, moreover in both
cases the binding sites for these modes are complicated
and at their saturation ligand molecules start interacting
with DNA by the second, electrostatic, mode. From this
point of view the dependence of (S(A7/T,’) on r, in case
of MB interaction with DNA at 20 mM Na' concen-
tration also may be the result of non specific binding of
this ligand to DNA. Meanwhile the incomplete interca-
lation (semi-intercalation) of ligand molecules into one
of DNA chains becomes the most preferable binding
mode. This is indicated by the fact that the change in
S(AT/T,’) is significantly less than in case of MB interca-
lation into DNA. At relatively high salt concentrations,
the DNA structure is more compact but at full ligand in-
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tercalation the DNA helix should locally untwist to form
an intercalation chamber [34]. The geometry of this cham-
ber in case of EtBr is sufficient to intercalate while in
case of MB it does not occur. At the same time the se-
mi-intercalation is thermodynamically permitted, since
in this case DNA structural reconstructions are not as
scaled as in the case of full intercalation [12, 34]. The
fact that curve 2 in Fig. 3, a, gets out of plateau at r, >
> 0.1, indicates the limitation of MB binding sites on
DNA in semi-intercalation mode and after their satura-
tion the ligand molecules start interacting with phospha-
te backbone groups of nucleic acid in electrostatic mode.

Therefore the obtained data allow to make the conclu-
sion that ligands preferably interact with DNA in inter-
calation mode, bind to DNA in minor groove or semi-in-
tercalation mode, moreover in certain cases this mode
may be preferable. At the same time ligands interacting
with DNA in non intercalation mode and showing spe-
cificity to certain types of bases also may intercalate
into double helix if the conditions for specific binding
are not suitable. It may be also concluded from the ob-
tained data that EtBr is a classic intercalator as well as
multimodal ligand and the mechanisms of its binding
to DNA do not depend on external medium factors
[21, 24, 35] while for both MB and H33258 a certain de-
pendence of interaction mechanisms of these ligands
with DNA on external medium factors is revealed (see
[3]). The above obtained results may be a good addition
to the literature data being practically applicable at the
screening of compounds directly binding to DNA and
influencing its structural and functional properties.

Conclusions. The interaction of MB with ds-DNA
has been characterized in the course of thermodynamic
studies. The obtained results show that the mechanisms
of MB binding to DNA are similar to those of EtBr: the
binding modes of these ligands depend on the molar
ratio r, and the concentration of cations in solution. It
was shown that besides nonspecific external electro-
static binding with DNA backbone phosphate groups
such interaction modes as intercalation or semi-inter-
calation binding also existed in the DNA-MB system.
Atlow Na' concentrations (2 mM) the possible binding
of MB with ds-DNA is intercalation. At increasing ca-
tion concentration to 20 mM Na" and small 7, ratios (r, <
< 0.1) the ligand molecules semi-intercalate into the
nucleic acid base pairs.
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Tepmoannamuueckuit ananus komiuiekcos JJHK ¢ meTuneHoBbIM

cuHUM, OpomucTeiM dTuanemM u Hoechst 33258

Pestome

Henv. M3yuums mepmoounamuieckue Xapaxmepucmuk KOMNIEKco8
osyxyenoueurnol JJHK mumyca menenka c memunenosvim cunum (MC),
opomucmoim smuduem (b3) u Hoechst 33258 (H33258). Memoowi.
Ceazvieanue MC ¢ 0syxyenoueunou JJHK ucciedosanu memooom Y -
nnagaenus. Pesynomamur. Obnapysiceno HecKoIbKO Munog cesa3vléd-
nua MC ¢ JJHK: unmepranayuouuviil, noIVUHMEPKATAYUOHHBIU U
anexkmpocmamuyeckuil ¢ pocghamuvim ocmosom JJHK npu Hu3kux KoH-
yenmpayusix Na' (2 mM). TIpu 6016uux KoHyenmpayusx Kamuoros u
HusKkux coommowenusx r, = [nueand]/[JJHK] (< 0,05) monexynvl au-
2aHOa NOYUHMEPKATUPYIOM 8 NPOCPAHCINEO MENHCOY COCEOHUMU OC-
nosanuamu. Ipu 6onee 8biCOKUX KOHYSHMPAYUAX AUSAHOA OCHOGHBIM
cnocobom cmanosumes anekmpocmamuyeckoe ceazvisanue MC c ghoc-
Gpamuvimu epynnamu JJHK. Beieoowsr. Cpasnenue mepmoouramuec-
Kkux napamempog komniexkcog JHK-MC ¢ makosvimu ons bBD u
H33258 ykaszvieaem Ha nanuuue 6oiee uem 00HO20 cnocoba ce:a3v16d-
Hus ueanooe ¢ THK. Yemanoeneno, umo, kpome Hecneyuguuecrkozo,
BHEUWHE20 DNIEKMPOCMAMULECKO20 CEA3bIBANUA C POCHamHbimu epyn-
namu, cyuecmeyion uHmepKaIAYuoHHbI U NOTYUHMEPKATAYUOHHBL
Munbvl 63aUMO0CUCMBUSL.

Knioueswie cnosa: Y®@-cnexkmpopomomempus niasnenus JJHK,
MEMUNEHOBbLI CUHULL, UHMEPKANAYUS, NOLYUHMEPKANAYUSL.

I1. O. Bapoesansn, A. I1. Aumonsin, JI. A. Ambapyymsin,
M. A. llacunan, A. T. Kapanemsan

Tepmoaunamiunuii ananiz komriekcis JJHK 3 MeTnieHOBUM CHHIM,

opomuctum eruiem i Hoechst 33258

Pestome

Mema. [ocnioumu mepmoounamiymi xapaxmepucmuk KOMNIEKCi6
osonanyroeosoi [[THK mumycy meaamu 3 memuaenosum cunim (MC),
opomucmum emuodiem (bE) i Hoechst 33258 (H33258). Memoou. 36 ’s-
3yeannss MC 3 06onanyiozosor J[THK eusuanru memooom Y @-nnasnen-
us. Pesynomamu. Busnaueno oexinoxa munie 36 azysanns MC 3 JJHK:
iuHmepKanayiiHuil, HaAnigiHMepKaIAYiuHUl I e1eKMmpoCmamudHull 3
gocpamnum ocmosom JIHK 3a nuzvkux konyenmpayiti Na' (2 mM).
3a eenukux Konyenmpayii Kamionie i HU3bKUX CRI6BIOHOWEHHSX I =
= [nicand]/[JTHK] (<£0,05) morexynu nicanoa HanisiHmepkaiowms y
npocmip Midic CyCiOHIiMU OCHOBAMU. 3a BUWUX KOHYEHMPAaYill 1icanod
nepesadicarouum cnocobom € enexmpocmamuune 36 ’azyeanns MC 3
Gocpamnumu epynamu JJHK. Bucnosku. Iopigusnns mepmoouna-
miunux napamempie komniexcie [JHK-MC 3 makumu Onsa BE i
H33258 eusiguno binvuw nis 00un cnocio 36 ’azyeanus aicanois 3 JJHK.
Bcmanosneno, wo, okpim Hecneyu@iuno2o, 306HilHb020 e1eKmpoc-
MAMU4HO20 36 'A3Y8aHHA 3 POChamuumu epynamu, icHyloms inmepra-
JAYIUHUL | HANTGIUHMEPKANAYTUHUL MUNU 83AEMOOII.

Knouosi cnosa: Y®-cnexkmpogomomempis niaenenns JJHK, me-
MULEHOBUL CUHTL, THMEPKAAYIs, HANIGIHMePKANAYIA.
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