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Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of
protein-ligand complex conformations. However, scoring functions used to estimate firee energy of binding still
lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on
docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Ef-
ficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of hu-
man serine proteases thrombin (F2) and factor Xa (F10) and two corresponding sets of known selective inhibi-
tors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown
their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless,
usage of the filters with optimized set of thresholds in combination with P, achieved significant improvement in
performance of ligand selection when compared to usage of P, alone. Conclusions. The proposed geometric fil-
ters can be used as a complementary to traditional scoring functions in order to optimize ligand search perfor-

mance and decrease usage of computational and human resources.
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Introduction. Nowadays, computer-aided drug design
is a widely used technique. It is mostly based on mo-
lecular docking and scoring approach [1]. Docking is
the procedure of protein (target) and small molecule (li-
gand) complexes geometry optimization aimed at fin-
ding the global energy minimum of the system. Accor-
ding to thermodynamics, the most likely configuration
of the complex corresponds to the Gibbs free energy mi-
nimum. Energy is usually estimated using certain force
field model and its minimization is performed by va-
rious methods. Typically, a large collection of small
molecules is docked against the protein active site. For
each optimized complex, different characteristics (sco-
res) are calculated to estimate binding free energy. Li-
gands with the highest scores are filtered for further
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testing in biophysical, biochemical and/or cell-based
screening assays.

Although there are many publicly available and
commercial tools for molecular docking and filters for
scoring, some problems still exist. While docking usual-
ly can provide adequate results for optimized geometry
prediction, scoring is a tricky thing and requires human
intrusion like visual inspection of three-dimensional
molecular complex structures by a drug discovery ex-
pert [2].

As the mechanisms of intermolecular interaction in
a protein—ligand complex exceed the classical mecha-
nics limits, accurate prediction of binding energy needs
quantum mechanical calculations, which boost require-
ments for memory size and floating point calculations
speed by orders of magnitude. Furthermore, flexibility
of both protein and ligand molecules causes an increase
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of freedom degrees of a typical system up to hundreds
or thousands for simulations with implicit solvent mo-
dels and even tens of thousands in case of explicit
solvent.

As a result of these complications, precise virtual
screening of large collections of small molecules be-
comes practically impossible, which forced us to use
simplified models with empirical scoring algorithms.

In this paper, we introduce geometric filters, which
are designed to select protein-ligand complexes from
the database of molecular docking results. The filters
use the molecular geometry of protein—ligand complex
as a main filtering characteristic as opposed to appro-
ximated potentials of inter-atomic interaction or other
loosely defined and computationally expensive func-
tions.

The main idea behind this approach is based on the
fact that molecular docking can predict the molecular
geometry stationary point rather accurately, which has
been proved by numerous X-ray structural analysis
experiments [3]. All mentioned above makes the propo-
sed filters robust and quick for interactive usage.

Materials and methods. In this study, four types
of geometry-based filters were introduced: nearest
atom filter (NA), center of mass filter (COM), out coef-
ficient filter (OUT) and hydrogen bond filter (HB). Des-
cription of the filters is provided below.

Nearest atom filter finds atom of the ligand that is
the nearest to the given atom of protein in the current
complex. Ligand passes the filter if this distance is less
than the specified value:
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where / is ligand atom index, p is the given protein

3
atom index, 7, is position of the n-th atom, R, is the

specified minimal distance. This filter has complexity
of O(n) and can select ligands that are partially located
close to the given atom of the protein active site and
evidently screens it from solvent. Filtering results may
be modified by considering only ligand atoms of cer-
tain type.

Center of ' mass filter finds the distance from ligand
center of mass to the given protein atom. Ligand passes
the filter if this distance is less than the specified value:
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where m, is mass of the n-th atom. This filter can select
ligands that are located close to the specified atom of
the protein active site and evidently screen it.

Out coefficient filter calculates numerical characteri-
stic which approximates the probability of destroying
the given protein-ligand complex. The following model
is used. The complex will be destroyed if ligand binds to
some external molecule and bonds with protein are des-
troyed. The probability of this event, P, may be appro-
ximated as

where N, is average number of ligand atoms that may
bind to the external molecule and W, is total number of
ligand atoms. The less P, the more stable the complex .
Number N, is estimated as

N
N, = Z Pis
k
where £ is ligand atom index and p,® is the probability
that k-th ligand atom will bind to the external molecule.
Probability p, depends on the number of protein atoms
that bind to the k-th ligand atom and shield it from
outside. Probability of shielding may be described by
the Markov field model with the Gibbs distribution:
pp=e™,
where 7, is average number of protein atoms which

shield the A-th ligand atom. Number #, may be estima-
ted in the same way:

where bpk is the probability that p-th protein atom binds
to the k-th ligand atom. Probability bpk in turn also may
be described by Markov field model:
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where R, is characteristic length of chemical bond bet-
ween k-th ligand atom and p-th protein atom. The final
expression for P is thus

r=r,
N N -
_ Ry,
€X] e
k P
P=
N

This filter requires O(n°) operations. To simplify
the case, R, is defined to be the same for all atom pairs
and equal to 1.1 C. In this case, the exact value influ-
ences only the value of filtering function but not its be-
havior.

Hydrogen bonds filter calculates estimated number
of hydrogen bonds between ligand and protein atoms.
Each hydrogen bond is characterized by strength
coefficient that may be estimated as
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where r,, is position of the 1-st acceptor, r

-

tion of the second acceptor, r,,

., 18 posi-

is position of hydrogen
atom, R, is characteristic length of hydrogen bond and
¢ is the bond angle.

To optimize the filters parameters and verify their
effectiveness, we conducted a cross-docking study. Hu-
man serine proteases thrombin (gene /2) and factor Xa
(gene F'10) were selected as targets. X-ray crystal struc-
tures of the protein catalytic sites were retrieved from
RCSB Protein Data Bank [4], entries 1oyt and 1{0s res-
pectively. Two sets of selective small molecule inhibi-
tors containing 244 compounds for thrombin and 331
compounds for factor Xa were retrieved from MDDR
database [5]. After generation of stereoisomers and ioni-
zation using LigPrep software [6], compounds were do-
cked into the three-dimensional protein active site struc-
ture using QXP/Flo software [7] with 100 steps of
SDOCKH+ routine. 10 lowest energy complex structures
were selected for each compound structure, which re-
sulted in a total of 10,580 and 7,410 complexes for
thrombin and factor Xa inhibitor sets respectively. Fil-
ters were applied to the complexes, and their perfor-
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Table 1
Summary of all filters applied in the study. Residue numbering
according to the crystal structure, PDB ID 1oyt

Filter ID Filter name Protein atom
Pi QXP/Flo built-in scoring function P, _
ouT Out coefficient -

HB Hydrogen bonds -
NA182 Nearest atom Leu99 CG
NA314 Nearest atom Aspl89 OD1

NAG63 Nearest atom Tyr60 CD1
COM Center of mass Gly216 HN

mance was evaluated in terms of receiver operating cha-
racteristics (ROC).

Description of all filters is provided in Table 1. Ar-
bitrary atoms of thrombin active site which were selec-
ted for the nearest atom filters and center of mass filter
are shown in Fig 1.

Results and discussion. To evaluate efficiency of
the filters, we conducted a virtual screening study whe-
re two sets of small-molecule inhibitors of two serine
proteases were docked against two sets of their selecti-
ve inhibitors. This resulted in a set of protein—ligand
complexes with both «native» and «wrongy inhibitors.
For each filter, a receiver operating characteristic (ROC)
was built. For each of the two proteins, the compounds
which have at least one protein-ligand complex passed
through a filter were considered positives. Out of positi-
ves, essentially, the compounds from one protein’s inhi-
bitor set were considered true positives (TP), while com-
pounds from another protein’s inhibitor set were consi-
dered false positives (FP). Additionally, a ROC was built
for the docking software QXP/Flo+ built-in scoring
function P, (Fig. 2). For the two protein crystal struc-
tures, we compare only filters which are independent of
arbitrary protein atom selection: OUT, HB and P..

It is clear from the ROCs, that the filters can be used
efficiently for selection of inhibitors, except the hydro-
gen bond filter in case of factor Xa. However, the QXP/
Flo built-in scoring function outperforms any of the pro-
posed filters.

Next, we focused on selection of thrombin inhi-
bitors with introduction of atom-specific filters NA and
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Fig. 2. Receiver operating characteristics for thrombin and factor Xa,

for the filters which are independent of protein atom selection: / — FXa

PI; 2 — Thrombin PI; 3 — Thrombin HB; 4 — Thrombin OUT; 5 — FXa

OUT; 6 — Random guess; 7 — FXa HB

0 01

COM. ROC:s for all filters for this case are provided in
Fig. 3.

As mentioned in Materials and methods, the num-
ber of compounds in the two sets is different. Further-
more, as 10 complexes were generated for every stereo-
isomer and every possible ionization state, different
compounds also have different number of complexes in

Fig. 1. Three-dimensional structure of human
thrombin catalytic site in complex with small-
molecule inhibitor retrieved from PDB entry
loyt. Atoms selected for filtering are shown:
1 —atom 314, Asp189 OD; 2 — center of mass
atom, Gly216 NH; 3 —atom 182, Leu99 CG;
4 —atom 314, Tyr60 CD1
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Fig. 3. Receiver operating characteristics for different filters and their
combination. ROC curve for random selection of protein-ligand comp-
lexes is included; C — Combination; / — PI; 2 — HB; 3 — COM; 4 —
NA314; 5—-OUT; 6—-NA182; 7—Random guess (complex based); § —
NAG63; 9 — Random guess (compound based)

the docking output. As a result, the number of thrombin
inhibitor complexes (true positives) is about 25 %
higher than that of factor Xa inhibitors (false positives).
To investigate an impact of this inequality, in addition
to obvious compound-based random guess ROC (TPR
= FPR), a complex-based random guess ROC curve
was built (Fig. 3). At this point, all complexes had equ-
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Table 2

Best-scoring filter cut-off value combinations. Values for nearest atom and center of mass filters are in angstroms (C)

TPR FPR P; OouT HB NA182 NA314 NAG63 COM
0.926 0.242 3.1 0.77 1.0 4.6 9.1 4.8 5.8
0.869 0.160 34 0.75 1.0 4.7 9.8 4.7 5.8
0.803 0.094 3.5 0.73 0.9 4.7 8.9 4.6 6.3
0.721 0.057 3.7 0.75 0.9 4.7 8.4 4.5 6.5
0.631 0.048 3.7 0.75 0.9 4.7 8.1 43 6.4

al probability to pass a «random guess filter», and this
probability was considered the filter parameter, vary-
ing along the ROC curve.

As one can see from the Fig. 3, all ROC curves are
located above the compound-based random guess line,
which proves the filters efficiency. Furthermore, all of
them are located above complex-based random guess
curve, except those for the nearest atom filters NA182
and NA63, which are only effective in certain ranges.
However, none of the filters outperformed the built-in
scoring function P,. DesPi te that, use of Pi alone would
not be a proper choice. Really, let us consider that in a
tyPi cal docking setup, we screen a set of about 50,000
compounds to obtain a docking library of no more than
5,000 compounds, which are going to be tested experi-
mentally. As we do not expect more than a few percent
of true binders in the initial set, size of the docking lib-
rary can be estimated as size of initial set multiplied by
false positive ratio (FPR), which in this case should be
10 % at maximum. As one can see from the ROCs, even
the best-performing at this FPR filters, P, and HB, give
only about 40 % of true positives, which is generally not
acceptable as it means loss of more than half of po-
tentially active compounds at the very first stage of drug
development. To address this issue, we carried out mul-
tiple filtering, in which all protein-ligand complexes
were sequentially conducted through all 7 filters, inclu-
ding the built-in scoring, thus applying logical conjunc-
tion to the filter conditions. In this computation, both TPR
and FPR are the functions of 7 variables, which are filter
cut-off values. The values of TPR and FPR were samp-
led in a broad range of filter parameters to optimize fil-
tering performance. The resulting ROC data points are
plotted in Fig. 3, and filter cut-off values for them are
provided in Table 2.
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Conclusions. The proposed geometric filters for
protein—ligand complexes have shown their efficiency
for selection of specific inhibitors in a cross-docking
study for serine proteases thrombin and factor Xa. How-
ever, their efficiency in terms of receiver operating
cha- racteristics is lower than that of QXP/Flo+ native
sco- ring function. Nevertheless, the filters can
significantly improve virtual screening performance
when used in combination with the scoring function.
When compa- red to usage of the scoring function
alone, target-spe- cific tuning of filtering parameters
achieved an incre- ase of TPR from 40 % to 80 % at 10
% FPR, and from 30 % to 65 % at 5 % FPR.
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0. O. Cyoaxos, O. M. banincoxuii, M. O. I1namonos,
/. b. Kosanvcoxuil

I'eomerpuyHi GLIBTPU JUIs KOMIUIEKCIB OLIOK—TiraH Ha OCHOBI

(heHOMEHOIOTIYHHUX MOJICKYJISIPHUX MOJeICH

Pestome

Monexynapuuii 0oKiHe € WUPOKO 3aCMOCO8Y8AHUM 0OUUCTIOBATLHUM
MemoOoM NOWLYKY Nieandi6 OioMONeKY, 30amHUM 00 O0CMAMHLO MoY-
HO20 nepedbayenHs KoHpopmayiil Komniekcie binok—nieand. Y moii
Jice Yac CKOpUHeOGUM (DYHKYIAM, WO GUKOPUCHOBYIOMb OJis OYIHKU
cunu 38’a3yeanns, opaxye mounocmi. Mema. Pospobka obuuciuio-
BAILHO NPOCIUX MA WEUOKUX AN2OPUMMIE O]l UOOPY NOMEHYITIHUX
i2an0i6 3 KOMNIEKCI8, OMPUMAHUX Y pe3yavmami 0okiney. Memoou.
Cmeopeno obuucniosanvii @inempu, 3aCHOBAHI HA 2eOMEMPUYHUX
CNiBBIOHOUIEHHSIX Y KOMNJIEKCI OIIOK—1i2aHO, eqheKMmUBHICmb SAKUX ne-
PEBIPEHO KPOC-O0KIHZOBUM OOCHIONCEHHSAM 13 3ACMOCYBAHHAM KPUC-
MARYHUX CMPYKMYP A00CLKUX cepunosux npomeas mpomoina (F2) i
¢paxmopa 10a (F10), a makosic 060x 8i0n08IiOHUX HAOOPIE 8I0OMUX Ce-
JIEKMUBHUX TH2IOIMOPIE 3a OONOMO20I0 NPOSPAMHO20 3A6e3neueHHs.
QXP/Flo. Pesynemamu. Oyinero pe3ynvmamu 3acmocy8ants Qinom-
pis y mepminax ROC-kpugux i3 3MiHHUMU NOPO20SUMU 3HAYEHHAMU
ma nokazano ixuio egpekmusnicmo. [lpome sxcooen 3 pinompis ne ne-
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pesepuius 3a egpekmugHicmio 60y0osary cKopuneosy ynxyiio P, npo-
epamu QXP/ Flo. Tum He meHut, 6UKOpUCMAHHs Qitempis 3 onmumi-
308AHUMU NOPO2OBUMU 3HAUEHHAMU Y KOMOIHayii 3 P, do3eonuno snau-
HO 30inbUUmMU eheKMuUHICMb NOPIGHAHO I3 3ACMOCY8ANHAM Juue P,.
Bucnoeku. Pospobneni eeomempuyni inbmpu modcyme ciy2yeamu
00NOBHEHHAM 00 MPAOUYIUHUX CKOPUHSOBUX (YVHKYIU O ONMUMI3aA-
yii nOwyKy 1i2andig i 3MEeHUeHHs 3a1yYeHHs OOYUCTIOBATILHUX MA TH00-
CbKUX pecypcie.

Kniouosi crosa: komn tomepna po3poodra nixie, monexyiapme mo-
0e1108aHHsL, OOKIH2, CKOPUH208A (DYHKYIs, 2e0Mempudti Qilompu.

A. A. Cyoaxoe, A. M. banunckuii, M. O. Ilnamonos, /]. b. Kosanvckuil

FCOMCTpI/I‘IeCKI/IC (1)I/IJ'ILTpI>I JJIA KOMIIJIEKCOB 66JI0K7J'II/II‘3.HZ[ Ha

OCHOBEC (beHOMCHOJ'IOI‘I/I'-IGCKPIX MOJICKYJISIPHBIX MOL[GJ'Ieﬁ

Pestome

Monexyasapubiili OOKUHE — WUPOKO UCNOTb3YEMbILL BbIYUUCTUMNENbHBI
Memoo NouUcKa aueanoos OUOMONEKY, CHOCOOHbI 00BOILHO MOUHO
npeockasvléams KOHGopmayuo Komniekca 6erok—iueano. B mo oce
8peMs CKOPUH208ble (YYHKYUU, UCNOTb3YeMble 011 OYEHKU CUNbL CB5l-
sb18anusl, nedocmamouno mounsl. Lleny. Paspabomka sviuuciumens-
HO NPOCMBIX U OLICMPLIX ANOPUMMOS 0TI 8blO0PA NOMEHYUATLHBIX
MUSAHO08 U3 KOMNIEKCO8, NOIYYEHHbIX 6 pe3yabmame dokunea. Me-
moodvt. Co30anvl gpiuucaIumenvHvle huibmpsvl Ha OCHO8E 2eoMempu-
YeCKUx COOMHOWENUL 8 KOMNIEKce Del0K—au2ano, 2¢hpekmusnocnms
KOMOPbIX Nposepena Kpocc-00KUH20BbIM UCCIe008ANUEM ¢ NPUMeHe-
HUeM KPUCALTUYECKUX CIPYKMYD 4el108e4ecKUX CepuHogulx npome-
a3z mpombuna (F2) u ¢pakmopa 10a (F10), a maxace 08yx coomeem-
CMBYIOWUX HAOOPOB U3BECMHBIX CENeKMUBHBIX UHSUOUMOPOE ¢ NOMO-
wvio npoepammuozo obecneuenus QXP/Flo. Pesynsmamut. Oyenenvl
pesyabmanmol npumenenus Gurbmpos ¢ mepmunax ROC-kpuswvix ¢ ne-
PpeMenHbIMU NOPO2OBbIMU 3HAYEHUAMU U NOKA3aHA UX IP@exmus-
Hocmb. OOHAKO HU OOUH U3 PUILMPOE He npeszouien no dPpexmus-
HoCmu 6CMpOeHnyIo ckopuneogyio gyuxyuio P, npoepammer QXP/Flo.
Tem ne menee, UCNOL306AHUE PUILIMPOE C ONMUMUIUPOBAHHBIMU NO-
PO0GBIMU 3HAUEHUAMYU 8 KoMOunayuu ¢ P, nozeonuno cywecmeenno
yeeaudums dPHexmueHocmy 6 CpasHeHUl ¢ nPUMeHeHuem moawvko P,.
Buieoowt. Paspabomannvie ceomempuyeckue Guibmpvl MO2ym ciy-
UMb OONOTHEHUEM K MPAOUYUOHHBIM CKOPUHSOBBIM (DYHKYUAM OISl
onMuUMU3AYUY NOUCKA TUAHO08 U YMEHbULEHUS NPUBTEUCHUS BbIUUC-
JTUMENbHBIX U 4e/08EUeCKUX PeCyPCOs.

Kniouesvie cnosa: komnviomepnas pazpabomka nexapcme, moie-
KVIIApHOe MOOenuposanue, OOKUHe, CKOPUH208asL YYHKYUSL, 2eoMempu-
ueckue uibmpeol.
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