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High intra- and interindividual variations in the expression levels of the human O6-methylguanine-DNA me-

thyltransferase (MGMT) gene have been observed. This DNA repair enzyme can be a cause of resistance of cancer
cells to alkylating chemotherapy. It has been studied the association of single nucleotide polymorphisms (SNPs) of
MGMT with the risk for different types of cancer, progression-free survival in patients with cancer treated with

alkylating chemotherapy, as well as an effect of SNPs on the MGMT gene expression and activity of the enzyme.

SNPs have been suggested to be the factors which influence the levels of interindividual variability of the MGMT
expression. Therefore, the aim of this paper was to review the experimental data on SNPs of the human MGMT ge-

ne, which are associated with cancer, as well as on location of MGMT-SNPs in regulatory and protein-coding re-

gions of the gene in relation to its regulation. Lots of MGMT SNPs, which could affect the gene expression and
result in interindividual MGMT variability or the enzyme resistance to pseudosubstrate inhibitors, have been re-

vealed within the promoter and enhancer regions, the 5'- and 3'-UTRs and introns of the MGMT gene, as well as

within the protein-coding region. Many of them may have regulatory effect.

Keywords: O°-methylguanine-DNA methyltransferase (MGMT), gene regulation, single nucleotide polymor-

phism (SNP), transcription factor binding site.

Introduction. The expression of the O°-methylguani-
ne-DNA methyltransferase (MGMT), the DNA repair
enzyme responsible for removing alkylation adducts
from the O’-guanine in DNA, and its activity determine
cell response to alkylating agents, including anticancer
chemotherapy, preventing mutations and cell death. This
enzyme can provide resistance of cancer cells to such the-
rapy. The high intra- and interindividual variations in
the MGMT expression levels have been observed, in-
dicating to a complicated regulation of this gene [1, 2].
It has been suggested that single nucleotide poly-
morphisms (SNPs) are the factors which influence the
levels of interindividual variability of the MGMT ex-
pression [3, 4]. The association of some MGMT poly-
morphisms with the risk for different types of cancer,
as well as the effects of polymorphic variations on the
gene expression and activity of this enzyme are discus-
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sed in [3]. Many known SNPs of the human MGMT
gene, which could affect the expression and result in
interindividual MGMT variability or the resistance of
the enzyme to pseudosubstrate inhibitors, have been re-
vealed within the promoter and enhancer regions, the
5'-and 3'-UTRs and introns of the MGMT gene, as well
as within the protein-coding region [3, 4]. It has been
shown that at least two intragenic SNPs have the influ-
ence upon an interindividual variation of the MGMT
activity in peripheral blood mononuclear cells [5], as
well as in normal human lung tissue [6].

Currently, disease- and trait-associated SNPs are ra-
pidly being identified in the genome wide association
studies and using related strategies [7]. The majority
(~93 %) of these variants lie within non-coding se-
quences, which are concentrated in regulatory DNA
marked by deoxyribonuclease I (DNasel) hypersensi-
tive sites (DHSs) [8]. Thus, SNPs in functionally impor-
tant non-coding DNA regions could make a significant
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Fig. 1. Single nucleotide polymorphisms (SNPs) from ENCODE [18] wi

thin promoter region of the human MGMT gene. The open chromatin re-

gion of MGMT promoter, marked by DHS and overlapped with TF ChIP-seq binding sites, is separated by straight lines: / — the human MGMT pro-

moter X6/657 from BLAT search; 2 — RefSeq gene and TSS location; 3 —
of which is proportional to the maximum signal strength observed in any

DNasel hypersensitive regions, marked as gray and dark boxes, darkness
cell line (the number to the left of the box shows how many cell lines are

hypersensitive in the region); 4 — the track of 7F ChIP-seq, which shows regions where TFs bind to DNA as assayed in different cell lines (the
darkness of the box is proportional to the maximum signal strength observed in any cell line); 5 — CpG island; 6 — repeating elements (the open
chromatin region contains C-rich repeat (Low complexity Family and Class), 156 bps in length at position chr10:131265319-131265474 on plus
strand of DNA); 7 — single nucleotide polymorphisms track from dbSNP build 137 which have a minor allele frequency of at least 1 %, mapping

only once to reference assembly

contribution to the phenotypic variation and disease sus-
ceptibility among individuals [9]. Evaluation of extent
and number of SNPs detected within the human MGMT
gene can be done by looking at the track of all SNPs in
the protein-coding and non-coding regions including
promoter from the UCSC genome browser (the Univer-
sity of California Santa Cruz, Figure in Supplement).
Since disease-associated SNPs systematically perturb
the transcription factor (TF) recognition sequences and
frequently alter allelic chromatin states, it is suggested
the involvement of some SNPs in transcriptional regula-
tory mechanisms, including modulation of promoter and
enhancer elements and enrichment within the expres-
sion quantitative trait loci [8]. In particular, SNPs in the
regulatory non-coding regions can influence the DNA
helical conformations, protein binding, methylation
status of CpG dinucleotides, transcript splicing, efc.
The aim of this paper is to review the experimental
data on SNPs of the human MGMT gene, which are as-
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sociated with cancer, as well as on location of MGMT-
SNPs in regulatory and protein-coding regions of the
gene in relation to its regulation. This article is the se-
cond part of a thematic series on the regulation of MGMT
expression.

SNPs in regulatory regions of the human MGMT
gene. There are several known SNPs in the promoter,
enhancer region, and introns of the human MGMT gene.
They include G135T, G290A, C485A, C575A, G6606A,
C777A, G795C, A1034G and C1099T (numbered ac-
cording to the X61657) [5, 10—12]. The X61657 is a ge-
nomic clone 1157 base pairs in length which contains
the sequence of the 5'-upstream region of the human
MGMT gene with the promoter activity and the first un-
translated exon, taken from the NIH genetic sequence
database GenBank [13, 14]. We have aligned X61657
to chromosome 10 by using Nucleotide Blast program
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and BLAT align-
ment tool [15] (Fig. 1).
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g"lt\l/ﬁffji’om dbSNP build 137 within open chromatin area of the human MGMT gene
Sé\;g]{g /flr;’;" Position Strand | Observed Re:ﬁ?lgce Allele frequencies ueses prediCte‘;f:zctg"c‘]‘(zela“ve to MGMT
1s1625649  chr10:131264931 - G/T T G: 61.53 %; T: 38.47 % upstream_gene_variant (523 bases)
rs35322871  chrl10:131264957 + /G G Not indicated upstream_gene variant (497 bases)
rs113813075 chr10:131265021 + A/C C A:2.78 %; C:97.22 % upstream_gene_variant (433 bases)
rs79442343  chr10:131265102 + A/G G A:4.39 %; G:95.61 % upstream_gene_variant (352 bases)
rs34180180  chr10:131265112 + A/G G A:3.42 %; G: 96.58 % upstream_gene_variant (342 bases)
rs189357135  chrl10:131265135 + A/G G A:0.41 %; G: 99.59 % upstream_gene_variant (319 bases)
rs112837630 chr10:131265201 + G/T G Not indicated upstream_gene_variant (253 bases)
rs34138162  chrl0:131265223 + A/C C A:5.35 %; C: 94.65 % upstream_gene_variant (231 bases)
rs1623007  chr10:131265287 - A/T T A:3.11 %; T: 96.89 % upstream_gene_variant (167 bases)
rs2782888  chr10:131265328 - A/C A C: 0.091 %; G: 96.98 %; T: 2.93 %  upstream_gene_variant (126 bases)
rs181536588  chr10:131265388 + A/T T A:10.03 %; T: 89.97 % upstream_gene variant (66 bases)
r$s16906252  chrl10:131265545 - A/G G A:3.42 %; G: 96.58 % MGMT (NM_002412):
synonymous_variant R (CGC) - R
(CGT)
rs113327489  chrl10:131265576 + C/G G Not indicated intron_variant
rs186050433  chrl10:131265642 + C/T C C:99.13 %; T: 0.87 % intron_variant
rs16906255  chr10:131265665 - A/C A A:8.02 %; C: 91.98 % intron_variant
rs149452540  chr10:131265680 + A/C C A:0.96 %; C: 99.04 % intron_variant

The changes within the promoter and enhancer re-
gions can affect the gene expression potentially, but it
is difficult to check this, because many other factors can
influence the MGMT expression. In particular, it is sug-
gested that the C575A variant revealed in melanoma
patients could influence the gene transcription [10], as
it is located closely to the binding site (BS) with the
eukaryotic heat shock factor [13]. The C1099T poly-
morphism located within the enhancer region in the
exon 1 [16] has been shown to increase the MGMT pro-
moter-enhancer activity in luciferase assay [11].

Since recent numerous studies have identified ma-
ny disease- and trait-related genetic variants [7], we ana-
lysed the human MGMT gene non-coding and coding
regions for SNP enrichment. The Fig. 1 presents a track
that contains the information about SNPs located with-
in an open chromatin area marked by DHS and over-
lapped with TF ChIP-seq BSs [17, 18]. They include

rs1625649; rs35322871; rs113813075; rs79442343;
rs34180180; rs189357135; rs112837630; rs34138162;
rs1623007; rs2782888; rs181536588; rs16906252;
rs113327489; rs186050433; rs16906255; 1s149452540
(Table 1). The location and data on SNPs were taken
from the UCSC Genome Browser, the SNP database
(dbSNP, build 137) at NCBI [17] and the SNPedia re-
source, which is focused on the medical, phenotypic
and genealogical associations of SNPs [19].

Some of the revealed SNPs are associated with can-
cer. In particular, the TT genotype of 151625649 loca-
ted 523 bases upstream the transcription start site (TSS)
of MGMT was found to correlate with a worse progres-
sion-free survival in patients with metastatic colorectal
cancer treated with oxaliplatin-based chemotherapy
than the combined GG + GT genotypes [20]. The co-
ding-synonimous polymorphism R (CGC) — R (CGT)
in NM_002412 (rs16906252, Table 1) was found to have
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A Reference allele
rs34180180
GAAAAGGTAC GGG[CCATTTG G CAAACTJAAGG CACAGAGCCT
VSCEBPA_01 14 (-) 0.977 0.975 ccatttgGCAAAct C/EBPa*
VSCEBP 02 14 (-) 0.984 0.968 ccatttgGCARAct C/EBP
rs16906255

GTGGGGGTCA GGGCGGCCCC A CACCCGACGG CGAAGTGAGG

VSAP2_Q6 22 (+) 0.942 0.947 caCCCGAcggcg AP-2

B rs189357135
ARCTAAGGCA CAGAGCCTCA G GCGGAAGCT GGGAAGGCGC C
—————— > M00148 SRY ————————————> M00087 Tk-2**

rs2782888
GAGCTGGGGC GGAGCCCGGG A GGGGCGGGGT GTTCCCGCCC
--------- > M00008 Spl

---------- > M00053 c-Rel

A BN MO0087 Ik-2

rs186050433
GCCTCGAGTG GTCCTGCAGG C GCCCTCACTT CGCCGTCGGG
777777 > M00271 AML-la

Polymorphic allele

rs34180180
GAAAAGGTAC GGGCCATTTG A CAAACTAAGG CACAGAGCCT

rs16906255
GTGGGGGTCA GGGCGGCCCC € CACCCGACGG CGAAGTGAGG

VSPAX4 03
VSAP2_Q6

16 (+) 1.000
22 (+) 0.942

0.98¢ gcccccCACCCg Pax-4
0.947 caCCCGAcggcg AP-2

rs189357135

AACTAAGGCA CAGAGCC[TCA A GCGGAAGCTG GGAAGGCGCC

—————— > M00148 SRY e —————5 MO0087 Tk-2
———————————— > M00074 c-Ets-1
————————————— > M00025 Elk-1

rs2782888
GAGCTGGGGC GGAGCCCGGE C GGGGUGGEGT GTTCCCGCCT
————————— > M00008 Spl
---------- > M00008 Spl

rs186050433
GCCTCGAGTG GI[CCTGCAGG T GCCCTCACTT CGCCGTCGGG
—————————————— > M00002 E47

Fig. 2. Examples of effect of polymorphic allele upon change of recognition motif for TF. Bioinformatic analysis has been done by using Match (4)
and TFSEARCH (B) programs. Notes: *matrix identifier, position (strand), core match, matrix match, sequence (always the plus strand is shown),

factor name; **TFMATRIX entries with High-scoring

a strong association with the promoter methylation
(silencing) in colorectal cancer [21, 22]. Also, it has been
shown, that polymorphism C485A in promoter was as-
sociated with increased risk of lung cancer in a Korean
population, despite this SNP did not have an effect on
the promoter activity [12].

Many other SNPs have been also found in introns
(Suppl. Fig.). It has been shown that the A allele of the
rs7087131 variant of the MGMT gene (chr10:131474474,
plus DNA strand; ref. allele G) was associated with a
decreased risk of esophageal squamous cell carcinoma
[23], while rs12268840 (chr10:131325299, in intron 1,
plus DNA strand) — with increased risks of adenocarci-
noma of the esophagus [24].

We discussed in our previous paper [25] that pro-
moter of the human MGMT gene from GenBank
(X61657) contained TSS, which is located within the
CpG island (CGI), DHS and exon 1 of the gene (Fig. 1).
The overlapping of CGI and DHS marks the open chro-
matin region and the location of active cis-regulatory
elements. The ENCODE studies of different cell lines
have demonstrated by using ChIP-seq (chromatin
immunoprecipitation with antibodies specific to the TF
followed by sequencing of the precipitated DNA), that
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the MGMT promoter can be targeted by several TFs in
open chromatin region including c-Myec, E2F6, Egr-1,
ELF1, HEY1, Nrfl, Oct-2, Pol2, POU2F2, TAF1 (Fig.
1, Table 2). TFBSs form two clusters located close to
each other. It has been identified a 59 bp enhancer wi-
thin the second cluster, which produced increased trans-
criptional activity in a reporter gene assay and was re-
quired for efficient promoter function [16]. This enhan-
cer sequence is located at the first exon/intron at position
+144 to +202 with respect to the TSS of the MGMT
promoter X61657 [16]. This sequence overlaps with
BSs for c-Myc, Oct-2, Pol2, POU2F2, TAF1 revealed
in different cell types (Fig. 1).

Since SNPs can perturb TF recognition sites, we
have analyzed the DNA sequences around polymorphic
nucleotides + 20 bases for any changes (Fig. 2) using
Match, which utilizes a library of positional weight
matrices from TRANSFAC® Public 6.0 (http:/www.
gene-regulation.com/pub/programs.html#match), as well
TFSEARCH program (http://www.cbrc.jp/research/
db/TFSEARCH.html). It has been revealed using Match,
that polymorphic A allele of rs34180180 caused disap-
pearance of BS for C/EBP (CCAAT/enhancer binding
factor), and polymorphic C allele of 1516906255 for-
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Table 2
Transcription Factor ChIP-seq from ENCODE [18]: binding sites
within open chromatin area of the human MGMT promoter

Cluster

Genomic
Score (out

Position .
Size

Factor

of 1000)
Pol2 chr10:131264940-131265389 450 1000
Pol2 (phos- 1 10:131265030-131265313 284 351
phoS2)

Pol2-4H8  chrl0:131265045-131265320 276 487
Pol2 chrl0:131265442-131265759 318 918
Pol2-4H8  chrl0:131265444-131265734 291 395
Eéfl ;—(SC chr10:131265006-131265281 276 157
%}H—(SC chrl0:131265483-131265720 247 367
Oct-2 chr10:131265419-131265686 268 204
HEY1 chrl10:131265510-131265642 133 242
HEY1 chrl0:131265128-131265249 122 243
POU2F2  chrl0:131265419-131265686 268 203
c-Myc chr10:131265081-131265290 210 236
o-Myc chrl0:131265434-131265643 210 334
TAFI chr10:131265086-131265349 264 311
TAFI chr10:131265429-131265771 343 259
Nifl chr10:131265139-131265388 250 291
?g)F 6_(H- 1r10:131265205-131265404 200 84
Egr-1 chrl0:131265216-131265431 216 376

med BS for Pax-4 (member of the paired box family of
TFs). Polymorphic A allele of rs189357135 has been
shown by using TFSEARCH to create two new BSs for
c-Ets-1 and Elk-1 (TCF) TFs, C allele of rs 2782888 —
for SP1, and T allele of rs186050433 — for E47 TF. Thus,
this short prediction analysis has shown a possible imp-
lication of SNPs in the change of recognition sequences
for TFs within the human MGMT promoter. Also, SNPs
can change the methylation pattern of CGI of promoter
and gene body, in particular due to the forming new or
destruction of existing CpG dinucleotides in DNA.
For example, in an open chromatin region of the given
gene there are three SNPs (rs79442343, rs113327489,
rs186050433), a reference allele of which forms CpG

dinucleotide (Table 1). The rs2782888 SNP forms such
dinucleotide, increasing a total number of CpG dinuc-
leotides within CGI, methylation of which can poten-
tially be attractive to binding with methyl-CpG binding
proteins which in turn recruit histone deacetylase comp-
lexes and cause the chromatin condensation [26].

Also, we have classified SNPs revealed from the
open chromatin area of the human MGMT promoter by
using Regulome database [27] to identify a putative re-
gulatory potential and a functional role of variants (Tab-
le 3). According to this database, only three of the ana-
lyzed SNPs (rs112837630, rs2782888, rs16906255)
belong to the group of variants, which likely affect TF
binding, since these SNPs are located within TF bin-
ding motif and DNase hypersensitive site [27]. How-
ever, the Fig. 1 shows higher amount of such SNPs,
which are located within an open chromatin area and
may affect TF binding. This difference is probably cau-
sed by the fact that RegulomeDB contains data from
the old built 132 of dbSNP.

SNPs in the protein-coding region of the human
MGMT gene. SNPs in the protein-coding region of the
MGMT gene were also found out in populations of
healthy donors and patients with different types of can-
cers. For instance, SNP at codon L53L (silent coding ef-
fect) in exon 3 was detected in melanoma patients and
healthy Swedish individuals [10, 28] and those from
the UK [5], L84F (missense) in exon 3 — in melanoma
patients and healthy individuals in Sweden [10, 28],
lung patients and healthy controls from Poland [11] and
in Caucasian population [29], as well as from the UK [5],
1143V (rs2308321, missense) in exon 5 — in Swedish
[10, 28], Polish [11], English [5] and Caucasian [29] po-
pulations. SNP at codon G160R (missense) in exon 5
was detected in young patients with adult type cancers
and in the control group [30]. K178R (rs2308327,
missense) in exon 5 was identified in melanoma pati-
ents and healthy individuals in Sweden [10, 28], in lung
cancer patients and healthy donors from Poland [11]
and the UK [5]. A silent SNP A197A in exon 5 was found
in melanoma patients and healthy Swedish individuals
[10].

Frequent in the human population polymorphic va-
riants L84F, 1143V and K178R are shown to have the
same DNA repair efficiency as the wild-type MGMT
enzyme, but they are more resistant to the pseudosub-
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Table 3

Summary of analysis of SNPs located within the human MGMT
promoter by using Regulome DB [27] within open chromatin area of
the human MGMT promoter

dbSNP ID Category Other resources
151625649 4% UCSC | ENSEMBL | dbSNP
1s35322871 4 UCSC | ENSEMBL | dbSNP
rs113813075 4 UCSC | ENSEMBL | dbSNP
1s79442343 4 UCSC | ENSEMBL | dbSNP
1s34180180 4 UCSC | ENSEMBL | dbSNP
rs112837630 2b** UCSC | ENSEMBL | dbSNP
1s34138162 3a¥** UCSC | ENSEMBL | dbSNP
rs1623007 4 UCSC | ENSEMBL | dbSNP
152782888 2b UCSC | ENSEMBL | dbSNP
rs16906252 4 UCSC | ENSEMBL | dbSNP
rs113327489 4 UCSC | ENSEMBL | dbSNP
116906255 2b UCSC | ENSEMBL | dbSNP

Category Description: * (4) — Minimal TF binding evidence + DNase
peak; ** (2b) — Likely to affect TF binding + any motif + DNase
footprint + DNase peak; *** (3a) — Less likely to affect TF binding +
any motif + DNase peak.

strate inhibitors, such as O°-benzylguanine and O°~(4-
bromothenyl) guanine, or PaTrin-2 [3, 4]. In particular,
it has been revealed that 1143V and 1143V/K178R va-
riants have no effect upon the DNA repair activity com-
pared with the wild-type MGMT [28]. Despite 1143V is
located closely to the C145 residue at the active site of
MGMT, this variant has been shown to have no effect
on the activity of the enzyme, but it was more resistant
to inactivation by the PaTrin-2 [5]. A higher sensitivity
of proteins to inactivation by PaTrin-2 has been also
observed for variants 1143-K178 and [143-R178 com-
parable with the V143-K178 and V143-R178 alleles
[5].

SNPs L84F and 1143V showed a statistically signifi-
cantly increased risk of lung cancer in Caucasian popu-
lation, especially in smoking women with non-small
cell lung cancer [29], and of adenocarcinoma of the eso-
phagus [24]. In another study, distributions of L53L and
L84F polymorphisms did not significantly differ bet-
ween the lung cancer patients and healthy controls [12].
1143V and K178R have been recently shown to corre-
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late with an increased risk of temozolomide-induced
myelosuppression [31]. It has been shown that K178R
is associated with increased risks of adenocarcinoma of
the esophagus [24], lung cancer risk [32], and with co-
lorectal cancer risk [33]. The association of MGMT
polymorphisms with a risk for lung, breast, colorectal
and endometrial cancer is reviewed in [3].

Conclusions. Many SNPs have been identified wi-
thin the human MGMT gene coding and non-coding
regions, in particular within the promoter region, 5'- and
3'-UTRs and introns. Some SNPs, which are detected
in the open chromatin area of promoter region and
marked by DHS, overlap with experimentally revealed
in different cell lines TF BSs. Consequently, they can
perturb these recognition sites, change methylation pat-
tern, due to forming new or destruction of existing CpG
dinucleotides in DNA, and as a result, such SNPs may
affect the gene expression. The association of MGMT
SNPs with the risk for different types of cancer, pro-
gression-free survival in patients with cancer treated
with alkylating chemotherapy, as well as an effect of
SNPs on the gene expression, activity of this enzyme
and its resistance to pseudosubstrate inhibitors were dis-
cussed. Thus, SNPs can be the factors which influence
the levels of interindividual variability of the MGMT
expression.
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A. I1. Ayuwuna, O. B. ITionana, JI. JI. JIykaw

Excnpecist rena MGMT: po3yMiHHS ii perysumii.

2. OnHOHYKJICOTHIHI TOTIMOpP(hi3MU

Pestome

Bidomo, wo 6 piensax excnpecii zena O°-memuneyanin-JJHK memun-
mpancghepaza (MGMT) arodunu icHyromos 3HAUHI 6HYMPIUWHLO- MA
MidciHOusioyanvhy eapiayii . Lleit penapamuenuil gpepmenm modice
CIPUYMUHAMU CMIUKICMb PAKOBUX KITMUH 00 AIKILY8ANbHOI Ximiome-
panii. Busueno acoyiayii 00HoHykieomuoHux noaimopgizmi (OHII)
MGMT 3 puzuxom 6aeamvox munie paxy, GUAHCUBAHHAM NAYIEHMIE 6e3
npozpecy8ants 3ax80pI06anHs NiCIA ANKINY8ANbHOI Ximiomepanii, a
marooic enaue OHII na excnpeciio cena MGMT ma akmugnicms dano-
20 pepmenmy. Ipunyckaroms, wo OHII € ¢pakmopamu, saxi uunamo
61IU6 HA pisHi MmidcinOugioyarvHol sapiayii excnpecii MGMT. B oe-
5101 po3enanymo excnepumenmanvhi oaui wooo OHII zena MGMT
JHOOUHU, ACOYILIOBAHUX 3 PAKOM, d MAKONC CMOCOBHO JIOKANI3AYIT
OHII MGMT y pecynsimopnux i 6in0K-K0OYI04itl OLIAHKAX 2eHa, 3a1y-
uenux 00 to2o pezynayii. 3nauny Kinoxicme OHII MGMT 3 nomen-
YITIHOIO 30AMHICMIO GRAUGAMU HA eKCNPecilo 2eHd MA CHPUYUHAMU
midcinousioyanvii eapiayii MGMT a6o na cmiiikicmo gpepmenmy 00
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nceeoocyocmpamuux iHeiOimopie GUSGNEHO y NPOMOMOPHIU Mda eH-
xawucepHitl obracmsx, 5'- i 3'-nempancivosanux OLIsIHKAX Ma iHMpPo-
Hax cena MGMT, a makooic y 6inok-kooyiouitl dinsinyi. Bacamo 3 Hux
MOJICYMb CLY2Yy8amu pe2yismopHumMu hakmopamu.

Kniouosi  cnosa:  O'-memunzyanin-JJHK ~memuampancepepasa
(MGMT), peeynayia excnpecii eena, 00HOHYKACOMUOHT NOXIMOPDI3MU
(OHII), caiim 38 ’aA3y6anHs 3 MpaucKpunyittHum ghaxkmopom.

A. I1. Ayviwuuna, O. B. [Muonana, JI. JI. Jlykaw

Okcnpeccus rena MGMT: noHUMaHKe €€ PEryIIsHH.

2. OAHOHYKJICOTHHBIC MTOTUMOP(U3MBI

Pestome

H3eecmno, umo cywecmeyiom 3HauumenvHule 6HYmMpu- U MeHCUHOU-
sudyanvHbie sapuayuu yposueii sxcnpeccuu 2ena O°-vemunzyanun-
JIHK memunmpancgepasza (MGMT) uenosexa. dmom pepmenm pe-
napayuu JIHK moocem Ovimo npuuunot ycmouuuocmu paxkosvlx
KAemoK K ankuaupylowel xumuomepanuu. M3zyuenvt accoyuayuu 0ono-
HyKAeomuoHsix noaumopguzmos (OHII) MGMT ¢ puckom s pas-
JUYHBIX MUNOB PAKA, BbIICUBAEMOCbIO NAYUEHMO8 De3 npozpeccu-
POBaHUs 3a001e8aHUs NOCILE ANKUTUPYIOW el XUMUOMEPANUU, d maKice
sausinue OHII na sxenpeccuto 2ena MGMT u akmusrnocms smozo ¢hep-
menma. Bvickazano npeononoacenue, umo OHII sienaiomes pakmopa-
MU, GIUAIOWUMU HA MENCUHOUBUOYIbHBIE YPOGHU BAPUAOETbHOCU
axenpeccuu MGMT. B 0630pe paccmompenst sKchepumenmaivhvle
oannvie omuocumenvno OHII cena MGMT uenosexa, accoyuuposan-
HbIX ¢ pakom, a makdce no nokaruzayuu OHII MGMT & pezynsamop-
HBIX U OENOK-KOOUPYIOWUX YHACIKAX 2eHd, NPULACTIHBIX K Pe2yaupo-
sanuio. borvuwoe konuwecmeo OHII MGMT ¢ nomenyuanvnou cno-
COOHOCMBIO BIUAMb HA IKCAPECCUIO 2eHA U NPUBOOUNb K MEICUHOUBU-
oyanvrot eapuabensnocmu MGMT wuiu Ha cmoiikocme ghepmenma K
ncesoocyoCcmpamnbl;mM UHSUOUMOPAM GbIABNIEHO 8 NPOMOMOPHOU U DH-
XancepHot ooracmsax, 5'- u 3'-nempanciupyemoix y4acmrax u uHmpo-
Hax eena MGMT, a maxoice 6 benok-kooupyrowem yuacmre. Muocue
U3 HUX MO2YN CILYHCUMb PeYIAMOPHLIMU haKMOPAMU.

Kniouesvie cnosa: O°-memuneyanun-AHK memurmpancgepasa
(MGMT), peeynayus excnpeccuu eena, 00HOHYKIOMUOHbII NOAUMOD-
@usm (OHII), caiim ceasviéanis ¢ mpanckpunyuoHHuIM GaKmopo.
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