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Lectins, in particular from plants, are proteins of non-immune origin that are able to bind carbohydrates with
high specificity. Due to their properties, phytolectins are of great interest in practical applications. They were
shown to play an important role in forming strategies for treatment of disease including cancer and HIV. Plant
lectins are an important tool in glycomic studies. Plant lectins with fungicidal and insecticidal activities are used
in transgenic technologies to increase plant resistance to pests and phytopathogens. The introduction of lectin-
like kinases genes into plant genome was shown to be perspective way to protect plants against environmental
stresses and regulate plant growth. Engineering of phytolectins allows obtaining molecules with known carbo-
hydrate specificity that can be applied in various areas. The studies are underway with the aim of design of lec-
tin-based drug delivery systems as well as the pharmaceutical drugs containing plant lectins. Because of the abi-
lity of phytolectins to bind to different substances they can be more widely used in the future. The review focuses

on current data and future possibilities in the application of plant lectins.
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Introduction. Lectins are a class of proteins which se-
lectively and reversibly bind to certain carbohydrates
or carbohydrate ligands of complex biomolecules.
Most lectins can bind to red blood cells [1]. This ma-
kes possible to call them «hemagglutinating proteins».
Lectins have been found in plants, animals, microor-
ganisms and viruses. Nevertheless, plants are the most
accessible source of carbohydrate-binding proteins [2].
Lectins that bind carbohydrates with high specificity
can be considered as decoders for information encoded
in carbohydrate-containing biomolecules (glycoconju-
gates). Therefore lectins that decipher the glycocode
are involved in various physiological processes of orga-
nisms [3]. The practical applications of plant carbohyd-
rate-binding proteins and the development of lectin-ba-
sed advanced biotechnologies are due to availability of
these proteins and largely depend on their properties.
The most important characteristic of lectins is the
ability to bind selectively to carbohydrates. The poten-
tial for the practical applications of phytolectins that
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bind to a wide variety of carbohydrates and recognize
the complex glycans is significantly greater than that of
other lectins. Some studies have shown that in addition
to the amino acid residues forming the monosaccharide
binding sites lectins can have the additional sites to bind
complex molecules [4]. The multivalent interactions of
plant lectins and carbohydrates [5] are of great impor-
tance in the function of these proteins. Other important
property which is required for practical applications of
carbohydrate-binding proteins is their stability at high
temperatures [6] or low pH [7]. The resistance of lectins
to digestive enzymes allows using these proteins in pro-
tection of plants against insects and in oral pharmaceuti-
cal preparations [8].

To use lectins for treating diseases it is necessary to
consider their potential effects on the blood since these
proteins are able to agglutinate erythrocytes. It has be-
en shown that lentil lectin and concanavalin A increa-
sed the osmofragility of rabbit red blood cells [9].

The plant lectins that are very similar to each other
can exhibit the differences in their biological activities
[10]. So, the minor differences in lectin binding to cer-
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tain sugars have led to some changes in the formation
of legume-rhizobia symbiosis [11]. Therefore it is ne-
cessary to study the properties of each lectin in details
before using this protein in biotechnology.

Modified lectins. The significance of lectins as sub-
stances with biological activity shows the need for en-
gineering these proteins, mainly their carbohydrate bin-
ding domains. Such approach for obtaining the lectins
of known carbohydrate specificity offers new possibili-
ties in the practical applications of carbohydrate-bin-
ding proteins. Modified lectins can be applied for gly-
come analysis, diseases diagnosis or therapy.

Mutated plant lectins. Site-directed mutagenesis in
the carbohydrate-binding domains of plant lectins,
which leads to proteins with known carbohydrate speci-
ficity, is one of the ways to modify lectins [12]. So, the
mutated Maackia amurensis hemagglutinins were found
to distinguish putative glycoforms of immunoglobulin
Al from immunoglobulin A nephropathy patients [13].
Besides, new mutated plant lectins can be useful for the
highly specific identification of different types of cells
[14].

Chimeric lectins. Another approach for obtaining
the lectins with new carbohydrate-binding properties is
the construction of chimeric lectin molecules by repla-
cing some amino acids residues with other residues [15].
For example, the treatment of bacteria from nodules of
Astragalus cicer with hybrid lectin PSL/AGL (bind ga-
lactose and mannose) constructed on the basis of pea
lectin (bind mannose) with the carbohydrate binding re-
gion of A. glycyphyllos lectin substituted for the corres-
ponding PSL region led to the formation of nodules by
microorganisms on alfalfa roots in contrast to control
plants. This suggests that effect of hybrid lectin is due
to broadening the range of carbohydrate ligands binding
to this protein [16].

Fusion proteins containing plant lectins. Fusion
proteins are shown to have a significant synergistic ef-
fect as biologically active compounds due to combining
beneficial properties from all components of which they
consist. It was shown that the scN-rGSII fusion protein
composed of soyacystatin N, a soybean cysteine protea-
se inhibitor, and lectin from Griffonia simplicifolia
(rGSII) inhibited the development of cowpea bruchid
(Callosobruchus maculatus) to a greater extent than the
mixture of individual proteins [17]. The association of
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two lectins, Allium sativum lectin (ASAL) and 4. cepa
agglutinin (ACA) has led to fusion lectin that revealed
strong inhibitory effect on the development of larvae
Lipaphis erysimi, a pest of Brassica juncea. It is impor-
tant that the toxicity of complex lectin against insect
was observed in artificial feeding and transgenic plants
[18]. Plant lectins being a part of the fusion proteins
with anti-insect activity can also act as a carrier protein
to deliver toxic substance to insect haemolymph [19].

Lectin-based delivery systems. Taking into consi-
deration the properties of phytolectins, mainly their car-
bohydrate-binding ability, the resistance to digestive
enzymes as well as the capacity of these proteins to me-
diate cytoadhesion, they are of great importance in the
development of lectin-based delivery systems. Targe-
ted delivery of drug promotes bioavailability of biolo-
gically active substances [20, 21] that is especially im-
portant for poorly absorbed compounds. Besides, targe-
ted drug delivery to selected sites allows reducing drug
toxicity and interchangeable target potential [21]. For
instance, wheat germ agglutinin (WGA) was shown to
have potential as a carrier for drug delivery [22].

There are two approaches to the formulation of lec-
tin-based drug delivery. In the first case lectins play a
role of the glycotargeting moiety while the drug is an
active component. This construction represents prodrug.
The second approach is used to create the lectin-grafted
carrier systems [20], in which lectins deliver the micro-
particules, nanoparticules or liposomes containing the
drug to the targeting site.

Applications of phytolectins for plant protec-
tion. The search for substances of biological origin to
protect plants from the damages caused by pests and en-
vironmental stresses has been actively carried out for re-
cent years. Some plant lectins are shown to possess in-
secticidal and fungicidal activities. For example, Glecho-
ma hederacea lectin inhibited the development of Lepti-
notarsa decemlineata larvae [23] whereas WGA revea-
led a significant antibiotic effect on growth of pathoge-
nic fungal species of Fusarium [24]. Plant lectin recep-
tor kinases can play a significant role during seed germi-
nation as well as in plant responses to salt and osmotic
stresses [25] and in the suppression of the insect-media-
ted inhibition induced defense responses of plants [26].
Jacalin-related lectins also have a great significance as
plant defense proteins [27] and for plant growth [28].
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Transgenic plants with introduced lectin genes.
Lectins with anti-pest and anti-phytopathogen activi-
ties were shown to be perspective for plant protection
when lectin genes were introduced into plant genome
[29, 30]. So, stinging nettle agglutinin reveals antifun-
gal activity in transgenic tobacco [29]. The survival and
fecundity of the tobacco aphid, Myzus nicotianae were
reduced when the gene encoding Zephyranthes grandi-
flora agglutinin was integrated into the genome of Nico-
tiana tabacum [30]. The transgenic plants expressing,
for example, bean a-amylase inhibitor 1, a lectin-like
protein from bean seeds were also resistant to pests [31].
Some phytolectins can confer resistance to transgenic
plants against nematodes [32]. The use of lectins for
plant transformation can be considered as a way to pro-
tect plant from virus infection including the viruses that
are transmitted by insects after eating plants. It was
shown that the plants carrying the gene of lectin with an
anti-insect activity had low virus levels [33]. A putative
mechanism of action of lectins expressed in transgenic
plants is to antagonize plant feeding insects by suppres-
sing animal nutrient supply [34]. On the other hand,
phytolectins are able to bind to sites for virus in insect
gut and block them [35]. Along with systemic expres-
sion of anti-insect lectin the tissue-specific one was
found to be very prospective approach in plant protec-
tion [36]. In spite of great importance of lectins in plant
protection they can be toxic to humans and animals [37].
This should be taken into consideration before creating
transgenic plants.

Recent studies have shown new directions in gene-
tic engineering of plants to enhance their resistance to
stresses. So, the introduction of two lectin genes into
plant genome [38] or lectin overexpression [39] could
result in a significant enhance of plant resistance to pests
and phytopathogen microorganisms. Besides, the intro-
duction of genes encoding lectin-like receptor kinases
into plant genome is a promising way to protect plants
from stresses [40] and to improve plant growth and de-
velopment. Taking into consideration an important role
of jacalin-related lectins in plant physiological proces-
ses these proteins also are of great interest for genetic
engeneering to increase plant productivity.

Exogenous plant lectins. Exogenous phytolectins
were also shown to protect plants against pests. For in-
stance, the significant reduction in oviposition by cow-

pea seed beetle, Callosobruchus maculates has been ob-
served as a result of treatment of Cicer arietinum seeds
with plant lectins. [41]. However, the lectin inhibitory
activity diminished with increasing an insect density.
Some phytolectins with an antifungal activity introdu-
ced into the plant rhizosphere with plant growth pro-
moting bacteria can reduce the number of phytopatho-
genic microorganisms in the root zone.

Lectins improve plant-microbe symbiosis forma-
tion. As a result of the development of symbiotic inter-
actions between rhizobia and legumes the nodules are
formed on plant roots. In these specialized organs on le-
gume roots the atmospheric nitrogen is converted into
compounds that are available for plants. Lectins were
shown to be involved in interaction of legumes and
nodule bacteria [42] and carbohydrate-binding sites of
lectins play essential role in biological activity of these
proteins [43, 44].

Genetically modified plants. Transgenic plants for
lectins were designed to study the role of these proteins
during the legume-rhizobia symbiosis. Nodules were
formed on the roots of transgenic plants carrying the
genes of some lectins whereas the introduction of genes
encoding other lectins into leguminous plants has led to
the development of nodule-like structures [45]. For
example, the expression of pea lectin in transgenic red
clover roots caused the formation of primordia similar
to root nodule after the inoculation of plants with pea
and alfalfa nodule bacteria, which normally do not
form symbiotic relationships with red clover [44].

Effect of exogenous plant lectins. It has been shown
that soybean lectin as a component of lectin-bacterial
preparation was able to improve the development of le-
gume-rhizobium symbiosis [46, 47]. In addition, soy-
bean lectin introduced into rhizobial suspension increa-
sed the level of symbiosis nitrogen fixation [46] and im-
proved plant productivity [48]. The effects of legume
lectins on symbiosis can be related to the ability of the-
se proteins to induce the metabolic changes in bacterial
cells and adhesion of microorganisms to root surface
[3].

Legume lectins can be used as a biotechnological
approach to improve the growth of microorganisms in
vitro [49] as well as to induce the bacteria biofilm for-
mation in the absence of the host plants (in the off-sea-
son) [6] and support the microbial activity in rhizo-
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sphere. However, some agrochemicals accumulated in
soil can prevent the development of lectin-mediated
plant-microbe [50] or microbe-microbe interactions
because of their ability to bind phytolectins.

Lectins for plant growth improvement. It was
shown that the application of plant lectins to crop seeds
improved seed germination [51] and plant growth [52].
On the other hand, lectins can improve plant growth
indirectly by means of increasing biological activity of
rhizosphere microorganisms. So, potato lectin introdu-
ced into the suspension of bacteria of the genus Azoto-
bacter enhanced the plant growth promoting potential
of microorganisms resulting in increasing potato pro-
duction [53]. Plant lectins were shown to be able to sti-
mulate nitrogen fixation in rhizobacteria [54]. The nit-
rogen compounds accumulated in root zone due to
microbial nitrogen fixation can be utilized by plants for
growth and development.

At the same time phytolectins can be used to protect
rhizobacteria against adverse environmental effects, in
particular heavy metals [55]. It is especially important
in current environmental situation in the world. It was
shown that the introduction of legume lectin gene en-
coding pea lectin into rice plants led to colonization of
non-legume root epidermal cells with nodule bacteria
[56]. Taking into consideration the fact that nodule bac-
teria are able to synthesize plant growth promoting sub-
stances [57], the establishment of transgenic plants car-
rying lectin genes to improve monocot plants growth
seems to be a promising way.

Phytolectins in glycan analysis. Lectins are a valu-
able tool for study of surface carbohydrate determinants
of plant, animal and microorganisms cells. The glycosy-
lation of organic molecules plays an important role in
different processes associated with cells [58] and the
cell glycan profile is a glycocode which provides the
identification of cells and the detection of pathogenic
changes in them. It was shown that plant lectins can be
used to study the glycan biomarkers on the cellular sur-
face during oncogenic processes [59] as well as for re-
vealing stage specific surface carbohydrates during the
development of microorganisms [60] to work out a stra-
tegy for the control of microbial growth. Plant lectins
were used to map the expression profile of biochemi-
cally defined saccharide epitopes in squamous epithe-
lia [61].
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Lectin affinity chromatography. Lectin affinity chro-
matography is a type of affinity chromatography when
lectins immobilized on supports, for example, agarose
are able to bind compounds with carbohydrate moieties
providing the selective separation of biomolecules. The
detailed structures of carbohydrates bound by lectins
can be determined using mass spectrometry. Plant lec-
tin-based affinity chromatography was used for protein
purification [62] and cancer-associated glycoproteins
identification [63] as well as to assess the polysacchari-
des composition of municipal waste water on a membra-
ne bioreactor [64].

Lectin arrays. Lectin array, in particular lectin mic-
roarray is a new method for high-throughout glycomic
analysis that uses the lectins immobilized on a solid sup-
port [65]. Modern high sensitive lectin-based microar-
ray technologies enable to identify even monovalent oli-
gosaccharides, which normally have a low affinity for
agglutinins [66]. Lectin array is a very prospective ap-
proach for revealing the disease-associated changes in
the glycosilation of cell proteins [67] or, for example,
for the evaluation of cell-surface microbial sugars [68].

Lectin histochemistry and cytochemistry. The signi-
ficance of plant lectins bound with different labels (pe-
roxidase, colloidal gold etc.) as cytochemical and histo-
chemical markers to identify glycoproteins in tissues
and cells is enormous. By binding to the carbohydrate
residues of cell glycoconjugates the labeled phytolec-
tins can be used for the detection of pathological states,
for example, in cancer diagnosis [69] as well as in the
hystochemical study on the plant-microbe systems
formation. So, the labeled arabinogalactane protein (3
lectin) was shown to be a probe for identification of 3-
related sugars in ultrathin sections of wheat leaves in-
fected with pathogen fungus [70]. Wheat germ agglu-
tinin conjugated with fluorescein isothiocyanate was
shown to be an effective tool for the isolation and cha-
racterization of plant growth-promoting rhizobacteria
[71].

The lectin enzyme-linked immuno sorbent assay
[72] and lectin blot [73] can also be used for the identi-
fication of protein with changes in glycosylation.

It was shown that the combination of different me-
thodological approaches provided a significant impro-
vement in glycomic analysis. For example, electropho-
retic protein separation and lectin array-based glycan
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profiling combined into a single experiment allow de-
veloping an effective lectin array blotting technology
[74].

Over the last few years a number of new techniques
involving plant lectins to study cell glycan composition
have been developed. One of them is the nanotechno-
logy-based system that was set up for the high sensitive
in situ identification of carbohydrates on living cells
[75].

Plant lectins in medicine. Biomedical research.
Plant lectins were shown to have great potential in bio-
medical researches. For example, the specific transsy-
naptic neural pathway was visualized by the introduc-
tion of wheat germ agglutinin cDNA as a transgene [76].
Besides lectins, which have an appreciable affinity for
sites of human immunodeficiency virus 1 (HIV-1) res-
ponsible for infection of human cells is a useful tool for
studies of causes of HIV infection [77] in order to find
the ways by which this disease can be prevented. Phyto-
lectins are of great importance to investigate changes in
cell glycosilation for tumor biomarkers [73] and to de-
termine tumour marker glycoproteins [78] or to study
human erythrocyte membranes, for example, in the case
of permanent radiation [79]. The legume lectins with
different carbohydrate-binding affinities were used to
determine the effect of carbohydrate residues of cell
membranes during inflammatory process in vivo. It is
suggested that the anti-inflammatory activity of legu-
me lectins may be due to a blockade of neutrophil-se-
lectine carbohydrate ligands, the major ligand on rat
neutrophil of which is N-acetyl-glucosamine [80].

On the contrary, Arum maculatum agglutinin re-
vealed the pro-inflammatory activity inducing neutro-
phil migration [81]. Carbohydrate-binding proteins can
be involved in determination of enzyme activities in
tissues extracts and cell cultures since they are able to
bind to carbohydrate products of enzymic cleavage [82].
Plant lectins were shown to be biomarkers for moni-
toring pluripotency in stem cell populations [83].

Disease treatment. Recent studies showed that plant
lectins can be used in medicine to treat a number of di-
seases. So, the lectins from the Amaryllidaceae family
can be considered as a type of microbicidal proteins for
prevention of human immunodeficiency virus infection
[84]. The lectins from Hippeastrum hybrid and Galan-
thus nivalis are found to inhibit both HIV-1 and HIV-2

infections by interruption of virus entry into cells. It was
shown that banana lectin inhibited the activity of HIV-
1 reverse transcriptase and the proliferation of leuke-
mia cells (L1210) [85]. Mistletoe lectins also had cyto-
toxic effect on tumor cells [86]. The mistletoe lectin and
mistletoe extract preparation standardized for mistletoe
lectin-1 induced cytokine production by monocytes,
which play an important role in cancer growth inhibi-
tion [87]. Sequential sustained-release preparation con-
taining cytotoxic lectin ricin and cobra venom cytoto-
xin was showed to inhibit the hepatocellular carcinoma
growth in vivo [88]. The inhibition of initial adhesion
and biofilm formation by Streptococcus mutans resul
ting from their treatment by lectins with specificity for
glucose and mannose revealed a new strategy in the treat-
ment of dental caries [89]. The antidepressant-like ef-
fect of lectin from Canavalia brasiliensis seeds shown
in the forced swimming test, was related to its interac-
tion with serotoninergic, noradrenergic and dopaminer-
gic systems [90].

Conclusion. Plant lectins have been exploring for
many years, however some issues remain poorly studi-
ed. Taking into consideration the ability of lectins to
bind selectively to carbohydrates and considering these
proteins as a type of signaling molecules triggering a
variety of physiological processes in living organisms,
it is possible to suggest that they have significant poten-
tial for widespread practical use. In the Figure the main
actual and potential areas of plant lectin application are
summarized.

There are several approaches for application of plant
lectins: (i) non-immobilized lectins can be used to in-
duce the metabolic changes in cells and tissues (im-
mune system modulation, treatment of diseases, plant
protection, microorganisms activation, plant growth re-
gulation), to block receptors (plant protection, treat-
ment of diseases), and to bind the cells (biofilm and
plant-microbe system formation); in addition, phytolec-
tins can be used for enzyme protection and activation,
and retention of biomolecules; (ii) labeled lectins serve
as probes (glycome analysis, disease diagnostics, mic-
roorganisms isolation) or lectins are used as drug carri-
ers; (7i7) immobilized lectins (lectin array, lectin chro-
matography) are used in glycome analysis and, for in-
stance, diseases diagnostics; (iv) lectin genes introdu-
ced into plant genome can provide protection of plants
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Plant protection
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! Introduction of lectin genes

(iv)
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pathogen growth) Glycome
Immune system Lectin- analysis
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(pro-inflammatory ~ drug diagnostics
and anti- delivery (labeled lectins
inflammatory as probe)
activity, stimulation Treating
of immune cells) ﬁ diseases
1] (anti-cancer
? ? activity)

Biofilm formation
Activation of
beneficial
rhizosphere
microorganisms

Treating diseases
(anti-HIV activity,
anti-flu activity)*

(i)
The actual and potential* areas of application of plant lectins

from biotic and abiotic stresses as well as regulate plant
growth and plant-microbe systems formation.

The most important area of application for phytolec-
tins in the future is medicine. The availability of these
proteins makes them a very valuable tool in disease di-
agnostics and therapy. The development of biotechno-
logy involving lectins is of great importance to enhance
the plant productivity because of growing demand for
food in the world. Genetic engineering of plants by in-
troduction of lectin genes is a prospective way to in-
crease plant productivity in the future if dispute over
the use of transgenic plants in agriculture is resolved in
favor of the last. Increasing the activity of soil microor-
ganisms by lectin with a view to harvest high crops [46]
can be another important area of lectin application, na-
mely development of lectin-bacterial preparations for
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farming. Recent studies have revealed that phytolectins
are able to increase the activity of enzymes [91] as well
as to stabilize enzymes against heat inactivation [92].
Therefore, plant lectins can be involved in the forma-
tion of enzyme systems for some industries. Obtaining
new lectins with a wide range of useful properties from
plant source [93] and using mutagenesis [15] as well as
the production of recombinant lectins [94] are of great
importance for the biotechnology development. The
ability of lectins to bind hormones and other substan-
ces can greatly extend the fields of application of these
proteins in the future.

Thus, phytolectins have a significant potential for
practical applications that are closely related to the
structure of these molecules and their physical and che-
mical properties.
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H. M. Menvnukosa, JI. M. Muxanxie, I1. M. Mamenko, C. A. Koyb
O6nacTi 3aCTOCYBaHHS POCIMHHUX JICKTHHIB

Pestome

Jlexmunu, 30kpema, 1eKMuHYU pocaun € OiIKamu HeiMyHHO20 NOX00-
JICeHHsL, 30AMHI 36 S13Y6AMU 8Y2/1e800U 3 BUCOKOIO CReyupiuHicmio.
3asosaxu ceoim enacmugocmam @Qimonekmunu GUKIUKAIOMb 3HAYHULL
inmepec wo0o iXnbo2o npaxmuuno2o 3acmocysauts. Ilokasano, wo
BOHU BIOI2PAIOMb BANCIUBY POIb NPU PO3POOYI cmpamezii iKYy 8aHHs
3axeoprlosans, exuodarouu pax i BIJI, a maxooc y 0ocniodcenni aniko-
My Kaimunu. Pocnunni nekmunu 3 @hyH2iyuonoro ma inceKmuyuoHow
AKMUBHICMIO BUKOPUCIOBYIOMb Y MPAHCSEHHUX MEXHONOIAX 01 Nio-
BUUEHHS CMITIKOCMI POCIUH 00 himonamozeHis i komax. [nmpodykyis
2€H16 NIeKMUHOBUX KIHA3 Y 2EHOM POCIUHU MOJice OYmu nepcnekmus-
HUM HARPAMOM 3AXUCMY OCIAHHLOI 610 Oii CMpPeco8ux YUHHUKIE HA6-
KOMUWHBbO20 cepedoguya i pe2yniosanns it pocmy. Koncmpyroesanms
Gimonexmunie 00360.19€ OMPUMYBAMU MOIEKYIU 3 NEGHOIO 8Y2I1e600-
HOW cneyu@iunicmio, wo po3wupioc cghepy 3acmocysanis 3a3nave-
Hux 0inkie. [Ipo6odsamb makodic 00CaioHceHHs 05l CMEopeHHsa (hapma-
Yesmu4HUX npenapamis, AKi MiCmsamo 1eKMuHY POCIUH, Ma cucmem
CIpAMOBAHOT 0oCcmasKu iKie Ha 0CHOGI 1ekmunig. Uepes 30amuicmo
Gimonexmunie 63aemMo0ismu 3 pisHUMU PEHOBUHAMU BOHU MOICYNb
Mamu wupuwe 8UKOpUCmanus 6 mauoymuvomy. O2na0 oxonuioe cy-
yacHi 0ani ma nepcnekmusHi HanpPAMKU RPAKMUYHO20 3ACMOCYBAHMHS
POCTUHHUX IEKMUHIB.

Knrouosi crnosa: nekmunu pociuH, 6iomexHono2is, 00CIiOMCeHH s
2niKOMY, OIoMeOUYHI OOCTIONHCeHHS, CLIbCbKE 20CN00APCHIBO.

H. H. Menvuuxosa, JI. M. Muxanxus, I1. H. Mamenxo, C. A. Koyb
OO6nacTu IPUMEHEHHS PACTUTEIBHBIX JICKTHHOB

Pestome

Jlexmumnvl, 6 uacmnocmu, 1eKmMuHbl pacmeruil AGAAIMCs benkamu He-
UMMYHHO2O NPOUCXOICOCHUS, CHOCOOHBIMU CEA3bIBAMDb Y21e800bl €
sbLCOKOU cneyuguunocmoio. Brazooaps ceéoum ceoticmeam gumoex-
MUHbL BbI36IBAIOM 3HAYUMENbHbLU npakmuyeckull unmepec. Ilokaza-
HO, MO OHU USPAIOM BAJICHYIO POJIb 8 pazpabomke cmpamecuu jieve-
Husi bonesnetl, exarouas pax u BUY, a marxoice 6 uzyuenuu enuxoma
Kaemku. Jlexmunvl ¢ hyneuyuOHoU u UHCEKMUYUOHOU AKMUBHOCHIBIO
UCNONB3YIOM 8 MPAHC2EHHBIX MEXHOL02UAX O NOGLIUEHUSL YCIMOUYU-
socmu pacmeHutl K pumonamocenam u HacekoMvim. Mnmpooykyus
2€H08 IeKMUHOBbIX KUHA3 8 2eHOM PACTEHUs. MOJcem Oblmb nepcnex-
MUGHBIM HANPAGLEHUEM 3AWUMbL PACMENUL OM OelicmUs Cmpecco-
8bIX (hakmopos okpydcaioujell cpedvl U pe2yiupo8aHus Ux pocmd.
Koncmpyuposanue ¢humonekmunog no3eonsiem nouyuams MoaeKyivl
¢ onpeoeneHHoll Yeie800HOl CheyuUpUUHOCIbIO, YUMo pacuupsiem cge-
Py npumenenus amux 6eikos. I[lposodsm uccredosanus 0as co30aHUs
dapmayesmuueckux npenapamos, CoOepAHCAWUx IeKmuHvl pacme-
MU, U cucmem aopecHoll 00CMABKU J1eKapcme Ha OCHOBe NeKMUHOB.
H3-3a cnocobnocmu 83aumo0eticmeosams ¢ pasHblMu Gewecmaamu
Gumonekmunvl Mo2ym umens 6ojee WuUpoKoe UCnOIb308anue 8 6yoy-
wem. Qb630p oxeamvleaem cospemennble 0aHHble U NePCneKmueHble
HanpagieHus NPUMeHeHUs PACMUMeNIbHbIX TeKIMUHOB.

Kniouesvle cnosa: niekmunvl pacmenui, OUOMexHoI02Us, U3yyenue
2NUKOMA, OUOMEOUYUHCKUE UCCIeO08ANUSL, CENbCKOE XO35UCMEO.
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