ISSN 0233-7657. Biopolymers and Cell. 2012. Vol. 28. N 4. P. 292-297

UDC 577.323:576.08

STRUCTURE AND FUNCTION OF BIOPOLYMERS

Influence of chloroquine on Kinetics
of single-cell gel electrophoresis

M. O. Zazhytska, K. S. Afanasieva, M. I. Chopei, M. A. Vikhreva, A. V. Sivolob

Educational and Scientific Center «Institute of Biology», National Taras Shevchenko University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601

sivolob@univ kiev.ua

In single-cell gel electrophoresis (the comet assay) the DNA of lysed cells, the nucleoids, extends towards the
anode in a track resembling a comet tail. The aim of this work was to investigate the effects of changes in DNA to-
pology on this process. Methods. We used the kinetic approach, proposed earlier by us, to measure a relative
amount of DNA in the comet tails as a function of time in the presence of different concentrations of chloroquine,
a widely used intercalator. Results. We have shown that, at given small concentrations, intercalation of chlo-
roquine strongly facilitates the comet tail formation. At the same time, some part of DNA (about 8 %) in the nuc-
leoids exits very fast independently on chloroquine, while the largest part of DNA (about three quarters) does not
exit at all. At high concentrations the intercalator increases the fraction of DNA, which cannot exit. Conclu-
sions. Our results imply that the loop domains, which contain about one to several hundreds kilobases, represent
only a small part (about a quarter) of DNA in the nucleus. The intercalation induces detachment of these loops
from the nuclear matrix.

Keywords: comet assay, chloroquine, intercalation, DNA loops, supercoiling.

Introduction. Single-cell gel electrophoresis (the co-
met assay) is a widely used sensitive technique to evalu-
ate the rate of DNA damages and their repair kinetics in
individual cells [1-4]. To perform the assay cells are em-
bedded in a thin layer of agarose on a microscope slide
and then lysed to produce nucleoids — negatively super-
coiled DNA loop domains attached to the nuclear mat-
rix [3, 5]. It is very often assumed that all the DNA in
the nucleus is organized in such loops containing from
a half to several hundreds kilobases. Under electric field
the DNA migrates towards the anode forming an elect-
rophoretic track, which resembles a comet tail and can
be visualized by fluorescent microscopy.

Although the comet assay is usually considered to
be eminently suitable for estimation of DNA damages,
for a long time there was no consensus on nature of DNA
that forms the comet tail [6]. In numerous experiments
DNA exit from nucleoids was significantly facilitated
when cells were exposed to DNA damaging agents. The-
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se observations led to the conclusions that, upon single
strand breaks accumulation, the comet tail can be for-
med whether by linear DNA fragments or relaxed DNA
loops attached to the nuclear matrix [1, 4, 6]. We have
shown in our previous studies that both possibilities
may be realized depending on the damage level and elect-
rophoresis conditions [7, 8]. In particular, in our experi-
ments on the kinetics of the comet formation in intact
(undamaged) cells the comet tail was effectively for-
med after long electrophoresis duration. In this case the
tail clearly contains nothing but supercoiled DNA loops,
which are extended to the anode. This interpretation
was confirmed by observation that DNA exit is rever-
sible after switching off electrophoresis [7, 8].
Moreover, an alteration of DNA supercoiling by
ethidium bromide (EtBr) intercalation essentially influ-
enced the rate of DNA exit in intact cells. At the appro-
priate concentration of EtBr (0.05 pg/ml) the DNA exit
was observed to be facilitated significantly due to un-
winding of the double helix and, respectively, removal
of the negative DNA torsional constraint. After further



KINETICS OF SINGLE-CELL GEL ELECTROPHORESIS

increase in EtBr concentration the exit was again ham-
pered, presumably due to the accumulation of positive
supercoiling in the loop domains [8]. It was suggested
that the comet assay performed in the presence of an in-
tercalator gives a possibility to estimate the level of DNA
supercoiling in nuclei.

We investigated the influence of another intercalator,
chloroquine, on the kinetics of DNA exit in the comet
assay. In contrast to our previous studies where the
fraction of cells with the tails was measured, here we used
the relative amount of DNA in the tails, the parameter
which is more straightforward. Since, in comparison with
EtBr, the affinity of chloroquine to DNA is considerably
lower this intercalator appears to be more sensitive to
detect the DNA supercoiling level. In addition, measuring
the relative amount of DNA in the tails allowed us to
observe three kinds of the loop domains: (i) loops that exit
very fast independently on the chloroquine concentration;
(ii) loops that are sensitive to chloroquine, the exit of
which is facilitated at low concentrations and hampered at
high concentrations of the intercalator; and (iii) loops that
do not exit at all. We discuss an insight, which is provided
by our results into the problem of topological organi-
zation of chromatin in the cell nucleus.

Materials and methods. Sample preparation. Hu-
man peripheral blood was collected into heparinized
medical syringe from healthy donors by finger-pri-
cking. Lymphocytes were separated by centrifugation
in a density gradient («Granumy, Ukraine) and then wa-
shed in 0.15 M NaCl twice. 50 ul of the suspension ob-
tained was mixed with 100 pl of 1 % low melting point
agarose («Sigmay, USA) at 37 °C. Aliquots of 25 pl of
the mixture were placed on microscope slides, which
were preliminarily covered with thin layer of 1% high-
melting point agarose («Chemapol», Czech Republic).
After 5 min of agarose polymerization at 4 °C, slides
were immersed in ice-cold lysis solution (2.5 M NaCl,
100 mM EDTA, 10 mM Tris-HCI (pH 8.0), and 1 % Tri-
ton X-100 («Ferak», Germany), which was added just
before use) for 3 h [2, 9].

The comet assay. Electrophoresis was conducted in
TBE buffer (89 mM Tris-borat, 2 mM EDTA, pH 7.5)
at4°C (1 V/cm, 300 mA). The comet assay was usually
performed in the presence of chloroquine («Sigmay),
which was added to the electrophoresis buffer at dif-
ferent concentrations. In all experiments we measured

the kinetics of comet formation: several slides, which
were simultaneously prepared in the same way, were
placed into the electrophoresis tank, and then they were
taken out for further analysis with interval of 10 min.

Comet scoring and analysis. Slides were stained
with 1.3 pg/ml of DAPI (4',6-diamidino-2-phenylin-
dole, «Sigmay) and immediately analyzed with a fluo-
rescent microscope («KLOMO», Russian Federation) con-
nected with a camera Canon EOS 1000 D. A total 100—
200 randomly chosen cells on each slide were examined
using image analysis software CometScore («TriTec»,
USA) to determine the relative amount of DNA in the
tails defined as the ratio of the tail fluorescence intensi-
ty to the total intensity of the comet.

Binding of chloroquine to DNA was measured from
changes in chloroquine absorption spectrum [10].
High-molecular-weight salmon testes DNA («Sigmay)
in TBE buffer was titrated by chloroquine stock solu-
tion in the same buffer and the optical density at 343 nm
was measured with a spectrophotometer (SF-46, «LO-
MOpy). Initial DNA concentration was measured spec-
trophotometrically taking the extinction coefficient
13,200 M (bp) ' cm " at 260 nm. The extinction coeffi-
cient of chloroquine free in solution at 343 nm was
found to be &= 14,000 M ecm. The extinction coef-
ficient of totally bound chloroquine measured in the
presence of a large excess of DNA was estimated to be
g,= 4,100 M cm . The fraction ¢ of bound ligand is
given by:

b=, C-A4)/(,C-¢,0),

where C is the total concentration of chloroquine; A4 is
the optical density measured. Only data points corres-
ponding to ¢ between 0.2 and 0.8 were taken into ac-
count. With C,,, being the total concentration of DNA
in solution, free chloroquine concentrationis L= (1-¢)C,
while chloroquine binding density (number of ligand
molecules bound per base pair) is v = ¢C/C,,, Accor-
ding to the model for non-cooperative excluded site bin-
ding derived by McGhee and von Hippel [11], the equa-
tion for the binding isotherm can be written as:
(I-nv) )

s
n—1

v=KL
(I-nv+v)

where K is the binding constant; # is the size of the bin-
ding site (the number of base pairs excluded to another li-
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gand by each bound molecule). To estimate the parame-
ters this equation was fitted to the experimental data
using a standard non-linear least-squares fitting routine.

Results and discussion. Fig. 1, a, shows the kinetics
of DNA exit from intact non-damaged lymphocytes as
it was observed at neutral pH without intercalators. An
example of comets is presented in Fig. 1, b: in all our ex-
periments, practically independently on electrophore-
sis duration, there were no changes in the comet mor-
phology. In particular, the average length of the comet
tail was approximately equal to 50 pm, which corres-
ponds to the contour length of an extended loop to be not
more than about 300 kb.

The kinetic plot in Fig. 1, @, clearly has a two-step
shape. The first step reflects some small part of DNA
(the relative amount of DNA in the comet tails does not
exceed 0.08 up to 30" min), which exits very rapidly (the
first plateau is reached in about 10 min). The existence
of the first step was implied by our previous results [7,
8], but now, when the amount of DNA in the tails is
measured instead of the fraction of cells with the tails,
this effect is much more pronounced. The second step
is sigmoid: the exit of a larger part of DNA (about 0.14)
is observed between 30" and 50" min. Then the relative
amount of DNA in the tails (0.08 + 0.14 = 0.22) re-
mains constant up to 80" min. Thus, the DNA exit during
the comet assay is stepwise: a rapid component forms
the lower plateau and a slow component additionally
contributes to the higher plateau.

Our previous works confirmed the idea that the co-
met tail is formed by extended DNA loops, the exit of
which is considerably facilitated when they are relaxed
[8]. Thereby, it is possible to postulate that the lower
plateau in Fig. 1, a, is formed by a small amount of «ra-
pid loops» with single-strand breaks, which naturally
occur in terminally differentiated cells. Since such loops
are relaxed they have to exit rapidly. When the electric
force is applied for a longer time an extension of intact
(and, respectively, supercoiled) DNA loops occurs. On
their way towards the anode, these loops have to overco-
me, except agarose resistance, their own torsional const-
raint: the negative torsion deformations appear in the
loops when they are stretched by the electric force.
Thus, the negatively supercoiled «slow loops» give the
main contribution to the higher plateau on the kinetic
plot in Fig. 1, a.
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Fig. 1. The relative amount of DNA in the comet tails as a function of
electrophoresis duration in the absence of chloroquine () and a typical
example of the comet appearance (), the nucleoids without (/) and
with the tails (2, 3) are indicated. In part (@) and in figures below each
point represents an average for 3 to 7 independent experiments, con-
tinuous curve is a result of an interpolation

Ifthe «slow loops» would be relaxed their exit would
be facilitated. The relaxation can be achieved due to par-
tial DNA unwinding upon binding of an intercalator. In
total accordance with our previous results obtained with
EtBr [7, 8], an essential acceleration of DNA exit was
observed in the presence of some concentrations of chlo-
roquine (Fig. 2). The acceleration begins already at ve-
ry low chloroquine concentration (5 pg/ml), and then it
becomes more pronounced at the concentrations 10 (not
shown), 25 and 50 pg/ml. The two-step kinetics, des-
cribed above for the case when the intercalator is ab-
sent, disappears and the relative amount in the tail rea-
ches the higher plateau in one step (in about 10 min):
the rapid and slow components mentioned above beco-
me indistinguishable. In other words, the supercoiled
loops, which are relaxed in the presence of chloroqui-
ne, exit as fast as the loops with single strand breaks do
(clearly, the loops with the breaks are relaxed already
and should not be sensitive to the topological changes
introduced by intercalation).

Further gradual increase in the chloroquine concen-
tration (and respectively in the binding density of the li-
gand) is accompanied by two effects: a slowdown in the
DNA exit and a decrease in the saturation level (Fig. 2).
The same effect was observed earlier with EtBr [7, 8].
It is interesting that at very high concentrations (500
and 1000 pg/ml) the two-step behavior appears again.

Fig. 3 shows another representation of the dependen-
ce of the rate of DNA exit upon chloroquine concentra-
tion: the relative amount of DNA in the tails after 10 min
of electrophoresis. The chloroquine concentrations in the
ranges from about 20 to 50 pg/ml appear to be the most
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0.3 7 A T Fig. 2. The kinetics of DNA
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0.20 - - 0.04 it is possible to estimate the chloroquine binding densi-
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Fig. 3. The relative amount of DNA in the tails after 10 min of electro-
phoresis and the net supercoiling density o in the loops (see text for de-
tails) as functions of chloroquine concentration

effective in the acceleration of DNA exit. It should be
noticed that the two plots in Fig. 2 for 25 and 50 pg/ml
are practically identical while the chloroquine concentra-
tions differ about twofold. Perhaps, it reflects a heteroge-
neity in the level of DNA supercoiling for the chromatin
loops in the nucleus.

With the purpose to get quantitative information
about the supercoiling level compensated by such chloro-
quine concentrations, we have obtained the isotherm for
chloroquine binding to high-molecular-weight DNA in
the conditions of the comet assay (see «Materials and me-
thods»). It was found after analysis of the isotherm (not
shown) that in TBE buffer the binding constant K= (2.4 +
+0.4) - 10’ M" and the apparent size of the binding site
n=4.4+0.4bp.

The binding site of chloroquine is larger than that
of EtBr (~ 2.5 bp [12]) presumably because of higher
charge (+ 2 for chloroquine against + 1 for EtBr at neut-
ral pH). The binding constant is about two orders lower
for chloroquine in comparison with EtBr [8, 12], which
explains that the most effective EtBr concentration to ac-
celerate the DNA exit is about 100 times lower [8] than
the chloroquine concentrations mentioned above. That
makes chloroquine more sensitive to resolve the DNA
supercoiling level.

where the free chloroquine concentration L is equal to
its total concentration in the electrophoresis buffer in
our experiments; A ~ 5 [12, 13] is the modified super-
coiling force constant; v, =-360° c,/(6/) is the binding
density corresponding to the total relaxation of the initial
negative supercoiling. In the last relation v, is the initial
(before an addition of the intercalator) supercoiling den-
sity in the loop, 6 = 17° is the chloroquine unwinding
angle [14], and h =~ 10.5 bp per turn is the DNA helical
periodicity. At v = v, the exponential term turns into
unity and the equation becomes equivalent to Eq. 1 that
describes binding to linear DNA.

Since the chloroquine concentrations 25 to 50 pg/ml
correspond to the relaxation (when the binding density
v = v, and the net supercoiling density ¢ ~ 0), then ac-
cording to Eq. 1 using the values of K and n mentioned
above the binding density can be estimated to be 0.07 to
0.09. It means that the corresponding initial supercoi-
ling density 6, =—-v0//360° is in the ranges from about
—0.035 to — 0.045. These values are quite expected for
the loops after removal of nucleosomes.

Taking the average ¢, = —0.04, we can estimate the
net supercoiling density in the loops at different chloro-
quine concentrations ¢ = G, + 6, where 6, = v0A/360°
is the supercoiling density introduced by the interca-
lator and v obeys Eq. 2. The result is presented in Fig.
3. Note, that the absolute value of positive supercoiling
density at the highest chloroquine concentrations is ap-
proximately the same as that of the initial negative su-
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percoiling density. Hence, the slowdown in the DNA
exit, which occurs when the chloroquine concentration
increases beyond 50 pg/ml, can be explained by the ac-
cumulation of positive supercoiling due to intercala-
tion: the rate of the exit at the highest concentrations of
chloroquine is about the same as in the absence of the
intercalator (Fig. 2, 3).

At the same time, the main effect of the high con-
centrations of chloroquine is the gradual decrease in the
maximum amount of DNA in the tails that can be rea-
ched after long time of electrophoresis (Fig. 2). This ef-
fect cannot be explained by an increase in positive su-
percoiling, since, in comparison with the case without
the intercalator, the supercoiling increases up to the sa-
me absolute values but the saturation level becomes much
lower (Fig. 2). Some additional contributions into the
hampering of the DNA exit may come from the chan-
ges in charge, contour length and stiffness of DNA upon
binding of intercalators [15, 16].

More probably, however, all this factors (taking
into account that according to our estimations the
binding density of chloroquine equals to ~ 0.16 at 1000
ug/ml) have to contribute into delay of the exit, not
into the hampering.

In our opinion, the most attractive explanation of the
hampering of the exit in the presence of high concent-
rations of chloroquine is related to a non-trivial observa-
tion, which was not discussed yet. Our experiments
allow us to discriminate between the two kinds of the
loops referred to as the rapid and slow components. But
there is obviously a third component: the loops that do
not exit ever. In all our experiments with intact cells the
maximum relative amount of DNA in the tails did not
exceed 0.25 (rarely in some samples it reached 0.3).
This means that the comet tail composed of the DNA
loops (relaxed or not), represents only small part (not
more than a quarter) of DNA in the nucleus.

Only for heavily damaged cells, as it is well known,
the relative amount in the tail may reach 0.7 to 0.8 or even
1 [17-19]. But in this case the tail contains linear DNA
fragments attached to or/and detached from the nuclear
matrix [8].

The loops, which cannot exit during electrophoresis,
are, more probably, simply the loops, which are too lar-
ge. Then the hampering of the DNA exit by an interca-
lator at high concentrations would mean an increase in
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the length of such loops due to decrease in the number
of loops that may exit. In other words, the local interca-
lation (which is accompanied by the double helix un-
winding) around the sites of the attachment of DNA to
the matrix may probably break the interaction with the
matrix.

This effect may have something in common with
our earlier observation that the total DNA unwinding
caused by NaOH makes it absolutely impossible to
form the comet tail, probably because of detachment of
the loops from the nuclear matrix [8, 20]. In the case of
chloroquine we apparently deal with «gentler» deta-
ching of DNA loops from the matrix due to local unwin-
ding of the double helix in the attachment sites. This de-
taching, in turn, enlarges the size of the loop domains
and, respectively, causes impossibility for them to exit.
Gradual increase in the chloroquine concentration in-
creases the probability of the detaching for growing
number of the DNA loops.

Conclusions. The results and notions of this work
can be summarized as follows.

1) In neutral comet assay a relaxation of DNA ne-
gative supercoiling in nucleoids due to intercalation
strongly facilitates the comet tail formation. When the
intercalation dependent relaxation is complete (at a gi-
ven concentration of an intercalator) the facilitation
reaches a maximum; at higher concentrations the in-
tercalator creates a hindrance for the tail formation, so
that the maximum level of DNA in the tails becomes
inaccessible.

(2) The kinetics of the comet tail formation in the
presence of an intercalator can be used to estimate the
topological state (the supercoiling level) of DNA in nuc-
lei of different cells in different functional states. Chlo-
roquin may be considered as one of the most suitable in-
tercalators for this purpose.

(3) Our results imply that the loop domains, which
contain about one to several hundreds kilobases and
can exit from the nucleoids during the comet assay, re-
present only a small part (about a quarter) of DNA in the
nucleus. The process of intercalation induces deta-
chment of these loops and, doing so, increases the frac-
tion of very large loops that cannot move during elect-
rophoresis.
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M. O. 3asxcuyvka, K. C. Agpanacwvesa, M. 1. Honeu, M. A. Buxpesa,
A. B. Cusonob

BrumuB XJI0poKiHy Ha KiHETHKY eIeKTpodope3y 1301b0BaHUX KIITHH

Pestome

Ipu erexmpogpopesi i301606anux Kiimun (KOMEMHOMY e1eKkmpogo-
pesi) AHK suxooums 3 nizosanux kuimun (Hykieoioig) y HanpsimKy 00
aHooy, ymeopriodu mpek, wo Haeaoye xgicm komemu. Mema pobomu
noaseana y susyenni gnaugy monoaoziunux sminy JIHK na yei npoyec.
Memoou. Buxopucmano 3anponoHo8aHutl HamMu paHiuie KinemuyHuil
nioxio ozs eumipiosanus ionocnozo emicmy J{HK y xeocmax xomem
3A1eHCHO IO Hacy 3a NPUCYMHOCMI PISHUX KOHYEHMPAYill X10POKIHY —
00HO020 3 8i0omux iHmepkansmopis. Pesynomamu. [lokasaro, wo 3a
NeGHUX HUZLKUX KOHYeHmpayiu IHMepKaiayis. X10pOKiHY CYMMmMEEO
NpUCKOpIOE hopmysans xeocmie komem. 3 iHuoeo 60Ky, HeenuKda
xinoricmos JJHK nyrneoioie (bauzvko 8 %) 6uxooums oyoice uweuoKo He-
3A€NHCHO 8I0 XIOPOKIHY, MOOL K OiNbwa vacmuna (npubausHo mpu
ugepmi) — He GUX0OUMb 63a2ali. 3a BUCOKUX KOHYEHMpayiil iIHmepKa-
asIMopa 3pocmac ys nezoamua 00 6uxooy yacmuna JJHK. Bucnoeku.
Ooepoicani pezynomamu KaA3yI0Mb HA Me, Wo nemeibHi OOMeHU, AKI
Micmsime 6i0 0OHI€EL 00 KiIbKOX COMEeHb Nap 0CHO8, NpeoCmagisons
auwe many yacmuny (bausvko usepmi) yciei JJHK nyxkneoioa. Inmepka-
AYIA CNPUYUHAE 810 '€OHAHHA YUX Nemedb 8i0 A0ePHO20 MAMPUKCY.

Kniouosi crosa: komemnuii enekmpogopes, X10pokin, inmepra-
asyis, nemai JJTHK, naocnipanizayis.

M. O. 3axcuyras, K. C. Apanacvesa, M. U. Yoneil, M. A. Buxpesa,
A. B. Cusonob

BrnnsHue X7TOpOKHHA Ha KHHETHKY 3IEKTpohope3a H30IHPOBAHHBIX

KJIICTOK

Pesrome

IIpu snexkmpogopese u301UpOSAHHBIX KIEMOK (KOMEMHOM dNeKmpo-
gopese) /IHK bixooum u3 1u3upo8aHHbIX K1eMOK (HyK1eouoos) 6 Ha-
npasienuu anood, Yopmupys. mpex, HanoOMUHAOWULL XOCHM KOMeNbl.
Lenv pabomul cocmosina 6 uzyueHuy 61UAHUA MONONOSULECKUX UMe-
nenutl ¢ /[HK na smom npoyecc. Memoowi. cnonvzosan npednodicer-
HbLL HaMU panee KUHeMmudecKuil nooxoo O UMepeHus OMHOCU-
menvroco codepoicanus JJHK 6 xeocmax komem 8 3a6UcuMocmu om
BpeMeHU 8 NPUCYMCMBUU PA3TUYHBIX KOHYEHMPAYUll XI0POKUHA — 00-
HO20 U3 u3eecmublx unmepkaiamopos. Pesynemamur. l[lokasamno, umo
npu OnpeoeneHHbIX HU3KUX KOHYEHMPAYUAX UHMePKAIAYUsL XTOPOKU-
Ha cywjecmeenno yckopsem gopmuposanue xeocmog komem. C opy-
2otl cmopoHwl, Hebonvuioe konuvecmso JHK nykieouoos (oxono 8 %)
BbLIXOOUM 04eHb DbICMPO HE3ABUCUMO O XAOPOKUHA, M020d KAK 001b-
was yacmo (MPUOIUIUMENLHO MPU HemEepmul) — He 8bIX00UM 8000ue.
Ilpu 8bICOKUX KOHYEHMPAYUAX UHMEPKANAMOPA YBEAUUUBACHCI IMA
necnocobnas K 6vixody uacme /JHK. Bwieoovi. Hawu pesyromanmoi
VKA3b18AI0M HA MO, YMO nemelibHble O0MeHbl, cOOepiicayue om 00HOU
00 HECKONbKUX COMEH Nap HYK1eomuodos, coCMmAagusion moibko Md-
ayto uacmo (oxono wemeepmu) ecei J[HK nyxkneouoa. Mnmepkansayus
8bI3bIGACH OMCOCOUHEHUE IMUX Nemelb OM A0ePHO20 MAMPUKCA.

Knrouegvie cnosa: komemuulil a1ekmpoghopes, XA0pOKuH, unmep-
xanayus, nemau /[HK, ceepxcnupanuzayus.
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