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Insulators were first identified as genomic elements either blocking communication between promoters and en-
hancers (enhancer-blocking activity) or restricting heterochromatin spreading (barrier activity). There are seve-
ral types of insulators in Drosophila which utilize different proteins. All insulators identified in vertebrates work
with the help of the multifunctional transcription factor CTCF. Biological functions of vertebrate insulators are
not clear yet. They are supposed to separate chromatin domains albeit there is almost none direct evidence of
this fact. The most significant is the participation of insulators in maintenance of centers of imprinting (im-
printing choice regions). The results of a number of recently published articles indicate that isolation of a gene
by placement of this gene into a separate topological domain (loop) is crucial to establishing imprinting. In this
particular case as well as in many other cases insulators serve as architectural elements supporting the three-
dimensional structure of genome. Moreover, interaction between pairs of insulators where cohesin plays a pivo-

tal role along with CTCF folds genome into various loops.

Keywords: chromatin domain, barrier element, enhancer-blocking element, CTCF, imprinting.

Introduction. The term «insulator» stands for special
genomic elements which provide functional isolation
of different parts of genome. Classical insulators possess
two different types of activities: enhancer-blocking (op-
posing the effect of enhancers on promoters placed be-
hind insulators [1]) and barrier activity (preventing pro-
cessive spreading of histone covalent modifications in
chromatin [2, 3]). At the same time there are deficient or
incomplete insulators bearing only one type of the acti-
vities described above. Therefore, it is right to call them
either enhancer-blocking or barrier elements. Unfortu-
nately, not all authors follow this nomenclature. Conse-
quently, in common literature the term «insulator» is
frequently used for both enhancer-blocking elements
without barrier activity and barrier elements lacking en-
hancer-blocking activity.
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Insulators were first identified while studying the
heat-shock gene locus of Drosophila melanogaster.
This locus was shown to be flanked by special genomic
elements (special chromosome structures, SCS ele-
ments) including regions hypersensitive to DNAse I [4].
It was later that SCS elements were shown to cut off the
communication between enhancers and promoters [1].
This activity was called enhancer-blocking. A special
enhancer-blocking assay is used for its detection. The
principal of this method is depicted in Fig. 1. Being
placed inside genome between enhancer and promoter
of areporter gene, enhancer-blocking element suppres-
ses the activity of the enhancer upon the promoter. At
the same time putting this element on the other side of
the enhancer does not impose such effect on the repor-
ter gene promoter activity (Fig. 1, 4). In a plasmid en-
hancer-blocking element is capable of disrupting the
promoter-enhancer communication only in those cases
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Fig. 1. Enhancer-blocking assay: 4 — insulator blocks promoter activation by a distal enhancer in the genome only if it is located between the pro-
moter and the enhancer; B —in a plasmid only two copies of insulator flanking an enhancer are able to suppress activation of the reporter gene pro-
moter by the enhancer; C — there is a similar situation in transgenes, produced using transfection of linearized constructs

when two copies of it flank enhancer [5] (Fig. 1, B). This
is the key difference between the enhancer-blocking
element and silencer which on the contrary suppresses
the enhancer activity despite its position relative to the
effected gene. Along with enhancer-blocking activity
SCS-elements possess barrier activity preventing the
spreading of inactive chromatin domains (heterochro-
matin). A reporter gene surrounded by SCS-elements
works normally even when the construct is integrated
into the pericentromeric region [2].

The following research elucidated that genomes of
all studied groups of eukaryotes from yeast to humans
contain insulators (both complete as well as deficient
with either enhancer-blocking or barrier activities) [6—
10]. However, no consensus motives were identified in-
side the insulator sequences of different taxonomic
groups [11].

Insulator of the chicken p-globin gene domain.
One of the most studied vertebrate insulators is the in-
sulator located at the 5'-end of the locus control region

(LCR) of the chicken B-globin gene domain which co-
localizes with DNAse I hypersensitive site 4 (DHS4,
see Fig. 2). This insulator is complete which means that
it has both enhancer-blocking and barrier activities
[12—15]. It was the first insulator to be identified in ver-
tebrates. Its properties were comprehensively characte-
rized with the help of transgenic experiments as well as
transient transfection of both vertebrate and invertebra-
te cell lines. The minimal fragment of DNA possessing
insulator activity (core element) and colocalizing with
DHS4 is about 250 bp in size and it represents a CpG-
island which has a remote structural resemblance to the
promoters of house-keeping genes [16]. An additional
fragment of 400 bp adjoining the core element at the 3'-
end is required to display the full insulator activity [17].
Within the sequence of the minimal insulator five dif-
ferent protein binding sites were identified [16]. One of
these sites (so called footprint I1, FII in experiments of
Reitman and Felsenfeld [18]) is necessary and suffici-
ent for enhancer-blocking activity. This site binds the

253



ULIANOV S. V., MARKOVA E. N., GAVRILOV A. A,, RAZIN S. V.

Condensed

chromcrm: 3 -insulator

FOLRI

ptBGY p (HBEY § (HBG2) & (HEE)

3 ~insulator ORI IM]

HSA !DHS4N DHSI
{1l

——iH—in

| B
fe- enhamer 3'HS

! 11

Insulator core
element

(CTCF und cohesin}

Spl and GATA-1

40 50 kbp

Fig. 2. Chicken beta-globin gene domain and its 5'-boundary insulator. FOLR I — gene encoding the folate receptor transcribed in earlier erythroid

progenitors; HSA — erythroid -specific DNAse I-hypersensitive site; DHS1-3 —

gene encoding an odorant receptor

multifunctional transcription factor CTCF [19]. Deletion
of FII leads to the loss of enhancer-blocking activity of
the insulator. The studies of the last few years show that
cohesin as well as CTCF is indispensable for the activi-
ty of enhancer-blocking elements. The CTCF binding
site overlaps with the site which binds cohesin. Knock-
down of either CTCF or cohesin leads to the loss of enhan-
cer-blocking activity of DHS4 [20]. It was demonstra-
ted that direct physical interaction between CTCF and
cohesion is needed for enhancer-blocking activity [21].
Barrier activity of the DHS4 insulator is retained af-
ter deletion of the CTCF binding site [19]. It means that
barrier and enhancer-blocking activities are provided
by different structural elements of the DHS4 insulator
and that barrier activity is supported by proteins other
than CTCF [14]. In particular barrier activity is perfor-
med with the help of protein USF1 (Fig. 3) which binds
to insulators and recruits complexes of H3K4- and H4R3-
specific histone methyltransferases, histone acetyltrans-
ferases and chromatin remodeling complexes [22, 23].
Other vertebrate insulators. CTCF-dependent en-
hancer-blocking elements were identified in human and
murine B-globin gene domains. They are located appro-
ximately in the same place as in the chicken B-globin ge-
ne domain i. e. at the 5'-end of the LCR and in the flan-
king region of the cluster of B-globin genes at the 3'-
end [24-26]. In another work it was shown that the 5'-in-

254

locus control region of the beta-globin gene domain; OR5IM1 —a

sulator of the human B-globin gene domain is capable of
transgene protection against position effects. It means
that like 5'-DHS4 of the chicken -globin gene domain
this insulator bears enhancer-blocking and at the same
time barrier activity [27]. In a number of works CTCF-de-
pendent enhancer-blocking elements were reported to
play a pivotal role in maintenance and support of im-
printing in the Igf2/H19 locus [28, 29] and in other im-
printed loci of the murine genome [30, 31]. CTCF-de-
pendent enhancer-blocking elements and full-fledged
insulators were detected also in a number of genomic do-
mains in different vertebrates [32, 33] and in humans
[34].

In the human genome certain tRNA genes [35] and
some repeated genomic elements [36-38] are able to
display insulator activity along with well-characterized
CTCF-dependent insulators.

Further studies of these new types of insulators can
substantially enlarge our scope of knowledge of the func-
tional organization of eukaryotic genome.

Mechanism of action of CTCF-dependent enhan-
cer-blocking elements. Though by now enhancer-blo-
cking elements have been studied for quite a long peri-
od of time the mechanism of their action remains un-
known. This lack of information is largely attributed to
the fact that the mechanism of enhancer activity so far as
well is only a subject for discussion. There are at least
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MAR (Matrix Attachment Region) within the maternal allele which
forms a chromatin loop containing gene /gf2. Such configuration
prevents activation of /gf2-promoter by distal enhancers (Enh); ACH —
active chromatin hub; /CL — inactive chromatin loop

three most popular models which though cannot be con-
sidered as alternative. One of these models postulates
that enhancer with associated proteins physically inter-
acts with promoter facilitating the preinitiation comp-
lex formation and/or driving one of the following stages
of initiation of productive transcription. Meanwhile
enhancer and promoter are pulled together with the help
of free or this-or-that way guided diffusion through the

nucleoplasm. This model is confirmed first of all with
the data obtained using chromosome conformation cap-
ture technique (3C). Indeed, it was demonstrated in a
number of model systems that enhancer and the cor-
responding activated promoter or a group of promoters
belong to the same complex. Such complexes were cal-
led active chromatin hubs [39—41]. The second model
[42] states that enhancer is pulled to the promoter through
tracking along the linker part of a chromatin strip.
RNA-polymerase Il may play the role of a molecular
motor in this case. And finally the third model claims
that enhancer recruits transcription factors and RNA-
polymerase Il which are then transferred to the promo-
ter [43]. In all three cases an enhancer-blocking element
can play a role of a peculiar «trap». Particularly it can
substitute a promoter providing an alternative platform
for enhancer binding. As a result an alternative loop is
formed (enhancer-insulator) [44]. In the same way insu-
lator can substitute a promoter via binding transcription
factors and RNA-polymerase II which moves along the
chromosome from enhancer to promoter [45]. Thereby,
it’s appropriate to recall that the well-studied insulator
from the chicken -globin gene domain is found within
the CpG island which has a certain structural similarity
to the promoters of house-keeping genes [16]. Other insu-
lators also have much in common with promoters [46].
Eukaryotic insulators with CTCF-mediated activi-
ty can interact with each other supporting the complica-
ted three-dimensional chromatin organization (see be-
low the section «Role of insulators in supporting the
three-dimensional genome organization»). Interaction
between two insulators can place a gene into a separate
chromatin loop which in turn in a number of cases (de-
pending on the loop size) can block enhancer-promoter
interactions [47]. For example, such interactions of se-
veral CTCF-binding elements inside of the murine im-
printed /g2/H19 loci (Fig. 4) place the /gf2 gene into a
separate loop tearing the connection between the pro-
moter of this gene and the remote enhancer [48]. In clas-
sical experiments demonstrating enhancer-blocking ac-
tivity of SCS elements from Drosophila special genetic
constructs were used containing one SCS element pla-
ced between enhancer and promoter. Herewith P ele-
ment was used as a vector providing single-copy inte-
gration of each construct into ectopic genomic posi-
tions. In case of eukaryotic cells the easiest way to pla-
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ce genetic constructs into genome is to transfect them
with linearized constructs which in the vast majority of
cases causes the integration of several copies of one
construct into the same genomic position. In order to
prevent the activation of a reporter gene with enhancer
from the near-by construct the reporter gene itself (or
the enhancer) is surrounded by two insulators (Fig. 1,
() [16]. Obviously, in this case the interaction between
insulators can place enhancer into an isolated loop of a
chromatin fiber.

Mechanism of action of barrier elements. It is
usually declared that complete insulators and isolated
barrier elements prevent spreading of whatever proces-
sive chromatin modifications which lead to formation of
both active and inactive chromatin domains. Notwith-
standing this fact in the majority of experiments only the
ability of barrier elements to block so called position ef-
fects was tested. Position effects consist in the suppres-
sion of transgene expression when integrated into some
heterochromatin region. Classical constitutive hetero-
chromatin is maintained with the help of H3K9-histone
methyltransferase and Hpl heterochromatin protein.
Processive spreading of heterochromatin domain is due
to di- and trimethylation of K9 of histone H3 recruiting
Hp1 protein which in turn recruits H3K9-histone me-
thyltransferase to modify H3 histone in adjacent nucleo-
somes [49]. For a certain period of time barrier ele-
ments were believed to be a kind of a passive obstacle on
the way of heterochromatin domain spreading («traffic
jam» model). Most of the described insulators coloca-
lize with DNAse I hypersensitive sites which represent
nucleosome-free regions. The sole presence of these nuc-
leosome-free regions could itself prevent the described
above processive heterochromatin spreading. Moreover,
binding of histone methyltransferase suppressor pro-
teins to these regions might as well be an extra restriction
to spreading of heterochromatin [50, 51]. Still it is clear
at present that the mechanism of barrier element activity
is more complex. The analysis of distribution of the mo-
dified forms of histones in different chromatin domains
elucidated the fact that the high level of histone acetyla-
tion is typical for insulators regardless of the transcrip-
tion status of the adjacent genomic domains [52]. In
ectopic positions insulators produce local domains of
hyperacetylated histones [53]. Therefore, the idea of an
insulator as just a passive element ceasing any signal
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transduction («traffic jam» model) does not fit the reali-
ty. In practice insulators are spots of nucleation where
different enzymatic complexes which are needed for
chromatin remodeling and histone modification are as-
sembled. Hyperacetylation of histones H3 and H4 and
methylation of K4 of H3 histone are observed in the re-
gion of 5'-insulator (DHS4) of the chicken -globin ge-
ne domain at all stages of development including the
nuclei of elythroid precursors (CFU-E) where trans-
cription of globin genes is not yet activated [54]. Factor
USF1 was proved to be indispensable for the onset and
further support of these epigenetic modifications in the
insulator region [22, 55]. This factor recruits chromatin
remodeling complexes (NURF) (Fig. 3) and enzymes
introducing histone modifications typical for the active
chromatin sites (hSET1, SET7/9, CBP, p300) [23].

Barrier elements possess one more important activi-
ty. They preclude de novo DNA methylation on a pro-
moter coupled to a barrier element [56]. It withdraws
the effect of repression imposed by DNA methylation
and subsequent binding of the repressor complex Mi2/
NuRD for transgenes that lack an insulator [53]. This
activity has connection neither to histone acetylation
nor to transcription and in case of DHS4 of the chicken
B-globin gene domain is provided by the ability of the
insulator to recruit protein VEZF-1 which binding sites
do not overlap with those of CTCF and USF1 [56]. This
activity accounts for the property of insulators to main-
tain stable expression of transgenes in tissues of trans-
genic animals. Modern technology for transgenic ani-
mal production aids tandem integration of a great num-
ber of copies of a transgene-bearing genetic construct
into the genome [57]. Like the repeated elements of the
genome itself tandem transgene copies are inactivated
over time via DNA methylation which inevitably leads
to a dramatic decrease of the transgene expression or
even to its complete repression. Insertion of insulators
into genetic constructs suppresses this effect.

Role of insulators in supporting the three-dimen-
sional genome organization. It has become quite ob-
vious lately that despite the discussed above barrier and
enhancer-blocking activities insulators also play an im-
portant role in supporting the three-dimensional struc-
ture of genome appearing as specific architectural ele-
ments. Interactions between remote insulators lead to
chromatin loop formation. In these interactions CTCF
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and cohesion play a pivotal role [58—61]. Chromatin
looping can lead to various consequences. As it has been
described previously a gene placed inside such a loop
can be inaccessible for the corresponding activating en-
hancer. On the other hand, chromatin looping provided
by two interacting insulators can assist direct physical
contact of promoters and enhancers resulting in trans-
cription activation. This phenomenon has long been
known for Drosophila (see [62, 63] for review). There
are many reports describing interactions of insulators
(CTCF binding sites) which place promoters and enhan-
cers in closer proximity facilitating thereby formation
of activator complexes in vertebrates [64—71]. In other
cases, as for example in the human Hox gene cluster,
the three-dimensional organization of genome suppor-
ted by CTCF-dependent insulators is essential for gene
repression [72]. Participation of insulators in genome 3D
structure maintenance can consist also in providing ap-
propriate localization of different genes in certain nuclear
compartments, particularly in prilamellar compartment
[65, 73] which leads to gene repression [74].

The biological role of insulators. After all that has
been said about insulators earlier in previous sections
the very statement of question about the biological role
of insulators might seem a bit surprising. Nonetheless,
this question remains quite topical as insulators possess
a wide range of biological activities and many of them
were tested in model experiments (expression of a repor-
ter gene in some ectopic genomic position). The ques-
tion of whether these activities are retained in normal
genomic positions remains at issue. Among the most
studied and well-characterized vertebrate insulators are
those at the 5'- and the 3'-ends of the B-globin gene
cluster. The role of the enhancer-blocking element at
the 5'-end of the locus control region is still quite obscu-
re due to the fact that many regulatory elements for-
ming the active chromatin hub at the 3-globin gene clus-
ter are located behind this enhancer-blocking element
[75, 76]. Similar facts and observations also bring to
question the role of the barrier element. Indeed, in mu-
rine erythroid cells the region preferably sensitive to
DNAse I considerably exceeds in size the B-globin
gene cluster enclosed by insulators. It includes a num-
ber of genes of olfactory receptors located in flanking
regions at the 5'- and the 3'-ends [77, 78]. In this context
the fact that direct deletion of both insulators flanking

the murine 3-globin gene domain has no evident biolo-
gical consequences is not in the least surprising [79, 80].
At the present time there are no methods for the hole-
genome analysis of the distribution of enhancer-blo-
cking and barrier elements. The only data available for
the analysis thereby is the distribution of CTCF bin-
ding sites in the genome. From 15000 to 25000 CTCEF-
binding sites were identified in different cell types of
which 45 % were located inside the intergenic regions
and 30 % were located inside the gene borders [81, 82].
Comparison of genomic distribution of CTCF-binding
sites and the distribution of different histone modifica-
tions led to the conclusion that a special class of CTCF-
binding sites exists which colocalize with the border re-
gions of chromatin domains [83]. The significance of
this observation is not clear yet as CTCF is not at all in-
dispensable for the activity of barrier elements [19].

The most sustained and clear function of insulators
so far is imprinting maintenance [84]. In this case the
most crucial is the ability of insulators to fold chroma-
tin into loops [60, 85—87]. Other cases where the biolo-
gical role of insulators is well-understood always keep
to chromatin loop formation [66, 71, 88, 89]. Therefore,
it is quite possible that the main function of vertebrate
insulators is to support the three-dimensional architec-
ture of the genome.
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C. B. Vavanos, O. H. Maprosa, O. A. I'aspunos, C. B. Pasin
IHCYyTOpH CCABIIB: PErYIATOPHI MEXaHI3MHE 1 CTPYKTypa XpOMAaTHHY

Pesrome

Incynsimopu 6yno 6i0Kpumo sk 2eHOMHI enemenmu, 30amHi nepepuea-
M 36 A30K MIdHC NPOMOMOPOM [ eHXAHCEPOM (AKMUBHICMb, AKA OIOKYE
@yuryionysanmnsa enxancepa), ma oomedxncysamu NOWUPEHHs 2emepo-
xpomamuny (bap epna akmuenicms). Y Oposzoghinu icHye dexintoka mu-
nig incynamopis, AKi npayioms i3 3anryueHHam pisnux oinkie. Bci onu-
CaHi IHCynsAmopu y ccasyie npayonms 3a yuacmi bazamo@yHkyio-
nanvro2o mpanckpunyitnozo pakmopa CTCF. Bionoziuni ¢pynxyii in-
cynsimopie ccasyie He 00 KiHys 3 ’sicoeani. Xoua 6azamo xmo gsadicac,
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WO BOHU PO3MEIICOBYIOMb XPOMAMUHOB] OOMEHU, NPAMUX CBIOUEHb
yvomy npakmuyno nHemae. Hatinokasosiwioro € yuacmeo iHcyasamopis y
pobomi yenmpie 6cmano8IeHHs iMnpunmuney (imprinting choice re-
gions). Pesynemamu Husku HeOagHo onyoniko8anux pobim ceiouame
npo me, wo 0151 BCMAHOBNEHHS IMNPUHIMUHEY CYMMEBUM € 80)Y008Y8AH-
HsL IHAKMUBOBAHO20 2€HA 8 OKPeMUll MONOA02IYHUL OoMeH (nemito). B
YboMy ma 6 ba2amvox iIHWUX BUNAOKAX THCYIAMOPU NPAYI0IOMb K ap-
XIMeKmypHi elemMeHmu, sKi RIOMpPUMYOmMs MPUSUMIPHY OpP2aAHI3aAYiI0
eenomy. Bzaemodis miow napamu incynamopis, y axux nopso 3 CTCF ic-
MOMHY POJib 8i0iepae KO2E3UH, OPeAHIZYE 2EHOM Y PI3HO20 pOOY Nemi.
Kutouosi cnosa: xpomamunosuii oomen, bap epuuil enemenm, en-
xancep-onoxyrouuii enemenm, CTCF, imnpunmune.

C. B. Vawsnos, E. H. Mapkosa, A. A. I'agpunos, C. B. Pasun

I/IHCyHﬂTOpr TIO3BOHOYHBIX JKUBOTHBIX: PETYJIATOPHBIC MCXAHU3MBI 1

CTPYKTYpa XpOMaTHHa.

Pestome
Hncynamopol 0biau OMKpbImbl KaK 2eHOMHbLE DIEMEHNMbl, CNOCOOHbIE
npepvieamy 6536 MeNCOy NPOMOMOPOM U IHXAHCEPOM (IHXAHCED-
OIOKUPYIOWAs AKMUBHOCITb) U OSPAHUNUBANb PACNPOCMPAHEHUe 2e-
mepoxpomamuna (bapvepHas akmusHocms). Y opozogunvl cywecm-
8yem HecKoNbKO MUno8 UHCYJIAmopos, pabomaiowux nocpeocmeom
npusnieuenus pasiuiHelx 6eakos. Bee onucannvie uncyaisimopul y no-
380HOUHBIX HCUBOMHBIX PAOOMAIOM NPU YUACIIUU MHO2OPYHKYUOHAb-
Ho2o mpanckpunyuortozo paxkmopa CTCF. Buonocuueckue ¢hyHkyuu
UHCYTIAMOPOB NO360HOUHBIX JICUBOMHLIX He 6NOJIHE ACHbL. Xoms npu-
HAMO CUUMAM®b, YMO OHU PA32PAHUYUBAION XPOMAMUHOBbLE OOMEHD,
NPAMBIX C8UOCMENbCme IMoMy npakmuyecku nem. Haubonee nokasa-
MeNbHBIM AGIAEMCA YHACmue UHCYISMOPO8 8 pabome Yyenmpog ycma-
Hoenenus umnpunmunea (imprinting choice regions). Pesynomamoi
PpA0a HedagHo OnyOIUKOBAHHBIX PAOOM CEUOCMETLCMBYION O MOM, YO
01 yCMaHOo8IeHUSL UMRPUHIMUH2A CYWECTNBEHHbIM AGIACC CMPAU-
6aHUe UHAKMUBUPOBANHO20 2€HA 8 OMOENbHbLI MONOI02UYeCKUll 00-
MeH (nemuio). B amom u mHo2ux Opyeux ciyuasx uncyismopuvl pabo-
maom 6 Kavecmse apxXumeKkmypHoix d1eMeHmos, H000epHCUBAIOUUX
mpexmepHyio opeanuzayulo eenoma. Bzaumooeticmeue meducdy napa-
MU uncynsamopos, 6 komopom napsoy ¢ CTCF 3nawumensmyio pons ue-
paem Koze3un, op2aHu3yen 2eHOM 6 pazIuiHo20 pooa Nem.iu.
Kniouesvle cnosa: Xpomamunogulti 0omen, b6apvepHulll d1emenm,
suxancep-onoxkupyrowuil snemernm, CTCF, umnpunmune.
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