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Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower
the capacity of base excision repair (BER) system which corrects the majority of DNA damages caused by these
reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase 3,
and APE1) by the directed modification of glycyrrhetinic acid (GA). Methods. Amides of GA were produced
from the GA acetate by formation of the corresponding acyl chloride, amidation with the appropriate amine and
subsequent deacylation. Small library of 2-cyano substituted derivatives of GA methyl esters was obtained by the
structural modification of GA framework and carboxylic acid group. The inhibitory capacity of the compounds
was estimated by comparison of the enzyme activities in specific tests in the presence of compounds versus their
absence. Results. None of tested compounds inhibits PARPI significantly. Unmodified GA and its morpholinic
derivative were shown to be weak inhibitors of PARP2. The derivatives of GA containing keto-group in 11
triterpene framework were shown to be moderate inhibitors of pol . Compound 3, containing 12-oxo-9(11)-en
moiety in the ring C, was shown to be a single inhibitor of APE1 among all compounds studied. Conclusions.
The class of GA derivatives, selective pol B inhibitors, was found out. The selective inhibitor of APE1 and weak
selective inhibitor of PARP2 were also revealed.

Keywords: DNA polymerase B, poly(ADP-ribose)polymerases 1 and 2, apurinic/apyrimidinic endonuclease 1,
glycyrrhetinic acid, inhibitor.

Introduction. Alkylating reagents being the oldest
class of anticancer drugs are still commonly used;
they play an important role in the treatment of several
types of cancer. Alkylated bases are predominantly
removed by base excision repair (BER) [1]. Apuri-
nic/apyrimidinic endonuclease 1 (APE1) and DNA po-
lymerase [ (pol B) involved in processing of apurinic/
apyrimidinic sites and DNA synthesis, the common
stages of BER independent on type of base damage,
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can be considered as the most relevant targets. For tar-
geting the whole BER process an alternative approach
can be used. It is based on the inhibition of proteins,
which regulate the overall efficiency of BER. Poly(ADP-
ribose)polymerases 1 and 2, PARP1 and PARP2, respec-
tively, are considered as regulators of BER [2]. Several
PARP inhibitors in combination with an alkylating drug,
temozolomide, are included in current clinical trials [3].
Thus, specific targeting BER enzymes, catalyzing the
key stages, in combination with alkylating reagents is
considered as a perspective approach in cancer therapy.
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Glycyrrhetinic acid (GA) possesses a broad spect-
rum of pharmacological activities and serves as a base
for highly active drug preparations [4, 5]. GA is an
aglycone of glycyrrhizic acid obtained from the roots of
licorice plants and represents the main product of its
metabolism [4, 5]. In the two past decades, there has been
growing interest in the study of licorice, one of the most an-
cient medicinal plants that were widely used in Chinese
and Tibetian medicine.

The renewed interest in licorice reflects the general
trend observed in medicinal practice, where remedies of
natural origin are finding increasing application despite
considerable success in the use of many synthetic drugs.
The drug preparations based on modified natural com-
pounds frequently exceed the parent substances in acti-
vity. For instance, several GA derivatives display consi-
derable antitumor activity [6—8].

Modulation of BER has the potential to enhance
response to chemotherapy and improve outcomes in tu-
mor treatment. In the current study, we aimed to study
inhibitory properties of GA derivatives on key BER
proteins, PARP1, PARP2, APE1 and pol 3, which are
considered as targets in cancer therapy.

Materials and methods. Materials. Rainbow mole-
cular mass markers («Amersham», USA) and the main
components of buffers, B-NAD" («Sigma», USA; or
Russian, ultrapure grade). 18BH-Glycyrrhetinic acid
acetate obtained from a licorice extract was used as a
starting material (purity ~94 %) [9].

Synthesis of GA derivatives. Methyl-2-cyano-3,11-
dioxo-18BH-olean-12(13)-en-30-oate (1) was synthesi-
zed according to described method [10]. Methyl-2-cya-
no-3,11-dioxoolean-1(2),12(13),18(19)-trien-30-oate
(2) and methyl-2-cyano-3,12,19-trioxoolean-1(2),11
(9),13(19)-trien-30-oate (4) was synthesized according
to [11]. Methyl-2-cyano-3,12-dioxoolean-1(2),11(9)-
dien-30-oate (3) was synthesized according to [6].

Synthesis of 18BH-GA-30-oic acid amides (5-7).
Amides of GA 5-7 were produced from the GA acetate
by formation of the corresponding acyl chloride (oxa-
lyl chloride), amidation with the appropriate amine and
subsequent deacylation (KOH, MeOH-tetrahydrofuran).
N-(pyrrolidin-1-yl)-3p-hydroxy-11-oxo-18BH-olean-12
(13)-en-30-oic acid amide (5) was synthesized accor-
ding to general method with yield 42 %. N-(piperidin-
1-y1)-3B-hydroxy-11-oxo-18fH-olean-12(13)-en-30-oic
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acid amide (6) was synthesized according to general me-
thod with yield 30 %. N-(morpholino-4-yl)-33-hydroxy-
11-ox0-18BH-olean-12(13)-en-30-oic acid amide (7) was
synthesized according to general method with yield 20 %.

Physicochemical description (Mp, 'H and “C data)
of amides 57 are in agreement with literature data [12].

Enzymes and their activity tests. Human PARPI,
rat pol B and human APE1 were expressed in Escheri-
chia coli cells and isolated as described in [13-15],
respectively. Murine PARP2 was expressed in insect
cells and purified according to [16]. Pol B, PARP1, and
PARP?2 activity assays were carried out as described
[14,17, 18], respectively. APE1 activity assay was car-
ried out essentially as described in [15].

Estimation of the inhibitory characteristics of com-
pounds. The inhibitory capacity of the compounds was
estimated by comparison of the enzyme activities in spe-
cific tests in the presence of compounds at variable con-
centrations versus their absence. The concentration of po-
tential inhibitors was varied in the range from 100 nM
to 1 mM. Depending on properties of tested compounds
(solubility in DMSO) and enzyme, we used two types
of inhibitory characteristics: residual activity at fixed
concentration of compounds or IC;, values (inhibitor
concentration reducing the enzyme activity by half).

Results and discussion. Influence of GA derivati-
ves on poly(ADP-ribose) (PAR) synthesis catalyzed by
PARP1 and PARP2. PARP1 and PARP2 are molecular
sensors of DNA breaks. Their activity is efficiently sti-
mulated by DNA lesions [19]. Involvement of both
PARPs in regulation of response to genoxic stress cau-
sed by ionizing radiation and alkylating reagents was
proved in cells and animal models [19]. Catalytic do-
mains of PARP1 and PARP2 display high level of ho-
mology and therefore can efficiently recognize the sa-
me compounds-inhibitors [20]. While, there are struc-
tural differences (small insertion in PARP2), which are
considered as a basis for creation of selective PARP2
inhibitors [21].

Influence of GA derivatives at different concentra-
tion of compounds on PARPs activity was determined
at linear part of the dependence of the rate of PAR syn-
thesis versus NAD' concentration. Data for all com-
pounds are summarized in Table and Fig 1. Typical
curve for PAR synthesis catalyzed by PARP2 in the
presence of GA is shown in Fig. 2.
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Inhibitory characteristics of compounds in specific reactions catalyzed
by PARP1, PARP2, DNA polymerase 3 and APE] (see Figure)

PARPI resi- |  PARP? resi- Ig%‘;“:;;’_“ APEI residu-
posnain | S| g | O e e
inhibitor inhibitor Ia&')vg;[ inhibitor

GA 38 03 mM**  >0.1 100
1 59 67 0.07 80
2 45 65 0.06 86

3 78 38 >0.1 0.03 mM**
4 84 42 >0.1 77
5 56 53 0.07 122
6 56 37 0.06 92
7 46 0.7 mM**  >0.1 mM 98

*Mean of at least two determinations; **IC,,.

HC CH,

nd CH,

Fig. 1. Structural formulas of new derivatives (see Table)

As whole, GA and its derivatives are inefficient in-
hibitors of PAR synthesis catalyzed by both PARPs.
GA and 7 (morpholine amide of GA) displayed some-
what better inhibition of PARP2 activity.

Influence of GA derivatives on DNA polymerase 3
activity. Pol B is the main DNA polymerase of base ex-
cision repair proceeding via short- and long patch path-
ways [22-24]. The level of pol 3 expression and activi-
ty is enhanced in some cancer cells [25, 26] that leads to
its competition with more accurate replicating DNA po-
lymerases and, as a consequent, to involvement of pol 3
in extrinsic DNA repair processes, for instance nuc-

leotide excision repair [27]. Thus pol B inhibitors can
provide a therapeutic effect, especially in combination
with DNA targeted drugs.

All synthesized GA derivatives were tested as po-
tential pol 3 inhibitors. A typical curve of the residual
pol B activity at variable concentration of 5 is shown in
Fig. 3. Data on influence of GA derivatives on pol fac-
tivity are summarized in Table.

The ester of GA bearing keto group at the 11 po-
sition (ring C), 1 and 2, unlike compounds 3 and 4 with
keto group at the 12 position, significantly affect pol 3
activity. In addition, the inhibitory effect is displayed
by pyrrolidine amide § and pyperidine amide 6 unlike
the morpholine amide 7. It should be noticed that the
last compound has a mild inhibitory effect on PARP2
activity. In line with our observation, several triterpe-

noid derivatives were also shown to inhibit pol B activi-
ty with IC,, being in micromolar range ([28, 29] and re-
ferences therein).

By and large, all known inhibitors of pol p irrespec-
tively of compound class have IC;; values in micromo-
lar range [28, 29].

Influence of GA derivatives on APE1 activity. Hu-
man APE]1 is a multifunctional enzyme. APE1 is invol-
ved in BER, which eliminates base lesions and sponta-
neous AP sites being the main AP site hydrolyzing en-
zyme of higher eukaryotes [30, 31]. APE1 expression
is altered in numerous cancers [31, 32]. High level of
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Fig. 2. Dependence of PARP2 residual activity on concentration of gly-
cyrrhetinic acid. Concentration of PARP2 was 200 nM, NAD" — 400 uM
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Fig. 4. Dependence of APEI residual activity on concentration of com-
pound 5. Concentration of AP DNA was 100 nM, APE1 — 0.3 nM

APE]1 protects cells from the action of different genoto-
xic agents; on the contrary, suppression of APEI1 leads
to apoptosis and renders cells to become more sensitive
to genotoxic agent exposure ([33] and references the-
rein). Thus APEI is considered as potential therapeutic
target. Selective APEI inhibitors can be useful both as
monotherapy drugs and sensitizers in combined thera-
py. APEI inhibitors have demonstrated potentiation of
cytotoxicity of alkylating agents in preclinical models
[31, 34-36].

Representative curve of 3 influence on APE1 activity
is shown in Fig. 4. Compound 3 is the only compound,
which causes practically full inhibition of APE1 acti-
vity at 100 uM concentration. None of other tested com-
pounds influences significantly the AP site hydrolysis
(Table).

226

<1057

w
n
1

N
(9%
1

~
n
1

Product accumulation, a. u.

0.5 T T T T T

0 100 200 300 400
Compound 5, uM

Fig. 3. Dependence of pol f residual activity on concentration of com-

pound 3. Concentration of pol § was 400 nM

IC,, values of APE1 specific inhibitors discovered
to date lie in the submicromolar—low micromolar ran-
ge [36, 37].

Conclusions. The class of GA derivatives, selecti-
ve pol B inhibitors, was found out. The selective inhibi-
tor of APE1 and weak selective inhibitor of PARP2 we-
re also revealed.
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I'ninuperoBa kuciota i 11 moxizaHi sk iHri6itopu noini(AJd-pu6o3o)
noniMepas 1 u 2, anypuHOBOi/anipuMiaMHOBOI eHIOHYyKIea3u 1 Ta

JHK-nonimepasu 3

Pesrome

Mema. [1[o6 nocunumu epexmugnicmo 8naugy MOHODYHKYIOHATLHUX
ANKIYIOHUUX RPOMUNYXTUHHUX NPENAPAMI6 8aANCTUBUM € SHUINICCHHS AK-
muenocmi cucmemu excyuziunoi penapayii ocnos (EPO), sika sunpag-
J5€ 3HAUHY yacmuny nouwikoodicenv JHK, wo sunuxaroms 3a 0ii yux
npenapamis. Mema yiei pobomu nonseanra y cmeopenni in2ioimopie
xarouosux pepmenmie EPO (IIAPI11, [IAPII2, non B, APEI) 3a paxy-
HOK Hanpasnenoi mooughixayii eniyupemogoi kuciomu (I'K). Memoou.
Amiou I'K ooeporcysanu 3 ayemamy I'K uepes ymeopernns 6i0nogioro-
20 ayunxaopudy, amioy8anHs 6i0N0GIOHUM AMIHOM 3 HACMYRHUM Oe-
ayunosannam. Hegenuky 0ibniomexy 2-yiano3zamiuyeHux Memunogux
egipie I'K ompumano cmpykmypnoro moougpikayieio ocmosa I'K i
Kapbokcunbrol epynu. Ineibyiouy axmusHicms cnoyk oyinio8anu y 6io-
NOGIOHUX CneyupiuHux mecmax 3a Npucymuocmi abo 8i0cymuocmi
cnonyk. Pesynomamu. JKoona 3 npomecmosanux cnonyk me incioye
IIAPII] 3uaunoro miporw. Hemooupixosana I'K i ii mopgoninosuii
amio suasuaucsa m’axumu ineioimopamu ITAPII2. Iloxioni I'K, axi mi-
cmamey Kemo-2pyny 6 11-my nonodcenni mpumepnenoo2o ocmoed,
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nposieunu NOMIpHi ineioyroui eracmugeocmi cmocoeno noi . Cnonyka
3, sika emiwgye 12-oxco-9(11)-enosuii 3anuwox y kinvyi C, — eouna ce-
peo ycix susyeHux cnoayk ineioye APEI. Bucnoeku. 3naiideno kiac
cnoayk, cenekmueno ineioyouux JJHK-nonimepasy . Takoxc eusigne-
Ho cenekmusHuil ineioimop APE1 ma m saxuu inei6imop I1APII2.

Knrouosi cnosa: IHK nonimepasa B, noni(4/]®-puboszo)nonimepa-
su 1 i 2, anypunosa/anipumiounosa enoounykieasza 1, eniyupemoga
Kucnoma, iH2i6imop.

A. JI. 3axapenxo, O. B. Caromamuna, M. B. Cyxanosa,
M. M. Kymysos, E. C. Hivuna, C. H. Xoowipesa, B. Llpeiibep,
H. @. Canaxymounos, O. U. Jlaspux

I'muuppperoBas KUCIOTa W €€ IPOU3BOAHBIC KAaK HHTHOHTOPHI
nonu(AlP-pudo3o)nonumepas 1 u 2, arryprHOBONH/anupUMUANHOBON
suonykieassl 1 u JJHK-nonumepassi 3

Pesrome

Lens. [{na ycunenust spgpexmugnocmu ausnus MOHOPYHKYUOHAb-
HbIX ANKUTUPYIOWUX NPOMUBOONYXONEBbIX NPENapamos GANCHO CHU-
3UMb AKMUBHOCMb CUCIEMbL IKCYUZUOHHOU penapayuu 0CHOBAHUL
(OPO), ucnpasisioweii 3nauumensuylo yacmos nospedicoenui /JHK,
BO3HUKAIOWUX npu Oeticmeuu dmux npenapamos. Llenvio dannoil pa-
b6ombl ABNANOCH CO30aHUE UHSUOUMOPOE KAtoYesbix (hepmenmos IPO
(IIAPI11, IIAPII2, non B, APEI) 3a cuem nanpagniennou moougpura-
yuu enuyuppemosoti kuciomol (I'K). Memoowt. Amuovt I'K nonyuenvt
u3z ayemama I'K uepe3 06pazoeanue coomeemcmeyoue2o ayuixiopu-
0a, aMuoUpoBaHuUsl COOMBEMCMBYIOUWUM AMUHOM C NOCIEOVIOUWUM Je-
ayunupoganuem. Hebonvwasn 6ubruomera 2-yuanozameujeHHolx me-
munosvix d¢upos I'K nonyuena cmpykmyphoii moouduxayueti ocmo-
sa I'K u kapbokcunvroii epynnul. HneubumopHyro akmusHocms coeou-
HeHull OYeHusalu 8 COOMEEeMCmaYIOWUx cneyupuueckux mecmax @
npucymemeuu unu 8 omcymcmeue coeournenuil. Pezynomamer. Hu
00HO U3 NPOMECMUPOBAHHBIX cOeduHeHull He uneubupyem I[IAPII] 6
sHauumenvHol cmenenu. Hemoouguyuposannas I'K u ee mopghonuno-
6blll amud oxazanuce maekumu uneubumopamu IAPII2. [Ipoussoo-
uote I'K, cooepocawue kemo-epynny 6 11-m nonodxcenuu mpumepne-
HOB020 OCMO6A, NPOSBUNU YMEPEHHbLE UHUOUPYIOWUe CBOUCMBA 6 OM-
nowenuu non f. Coedunenue 3, cooeporcawee 12-oxco-9(11)-enoswiii
ocmamok 6 konvye C, — eOUHCmEeHHoe cpedl 8cex U3VHeHHbIX cOeOU-
HeHutl uneubupyem APE1. Bo1eoowvt. ObHapyoicen Knacc coeounerul,
cenekmugno uneubupyowux JHK-nonumepasy B. Takoice eviasnenvi
cenexmugnwlll uneubumop APE1 u msexuii uneubumop I[1APII2.

Knrouesvie crosa: /IHK nonumepasa B, nonu(A4P-puboso)nonu-
mepaswl 1 u 2, anypunosas/anupumuounosas SH0oHyKeasa 1, enuyup-
pemosas KUCIoma, uHeuoumop.
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