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Reverse engineering of gene regulatory networks is an intensively stu- died topic in Systems Biology as it
reconstructs regulatory interactions between all genes in the genome in the most complete form. The extre- me
computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene
regulatory network is a sig- nificant obstacle to further development of this area. In this article the two most
common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The
mathematical descrip- tion of each method is given, as well as several algorithmic approaches to modeling gene
networks using these methods; the complexity of al- gorithms and the problems that arise during its

implementation are also noted.

Keywords: reconstruction of gene regulatory networks, Boolean networks, Bayesian networks.

Introduction. The gene regulatory network is a com-
position of indirectly related modular DNA elements
(genes), receiving multiple input signals in the form of
RNA and proteins, processing the signals and inducing
the rate of the network genes transcribing into RNA
and translating into proteins. The network architecture
reflects the interaction between its various elements
and provides us with the most complete information on
the regulation of cell functioning in contrast to the tra-
ditional study of single genes, thus, the reverse engi-
neering of gene regulatory networks is an important
topic of Systems Biology.

There are 10 currently used approaches to the en-
gineering of gene networks, including machine lear-
ning, Bayesian networks, Boolean networks, diffe-
rential equations, Information Theory, Petri nets, neural
networks, and genetic algorithms [1-3]. Each approach
has advantages and disadvantages, the definition of
which is complicated due to the lack of substantial

© Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012

reviews in scientific literature. Another problem is that
the abovementioned approaches are used to reconstruct
small networks of only 10-30 genes. The increase in
the number of genes causes an exponential growth of
the calculation complexity: for 30 genes there are
2.71:10"* probable network variants in case of using
Bayesian networks [4], although for Information Theo-
ry the complexity estimate is considerably less [5].
However, the task of reverse-engineering of gene
networks is still NP-hard [1], therefore, a vital part of
reviews should be dedicated to estimating the com-
putational complexity of the inference algorithms and
the analysis of algorithms which will allow revealing
the possibility of parallelizing to use them in the dis-
tributed computing and clusters.

This article reviews two engineering methods —
Boolean and Bayesian networks, several algorithmic
approaches and their evaluation.

Different methods of presenting gene networks.
One and the same gene regulatory network may be
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Fig. 1 Different ways of presenting the gene regulatory network of four genes a—d [6]: a — network in the form of the directed graph (interaction
course is indicated with “+” and “-—”, i.e. activation and inhibition); b — respective model in the form of Bayesian network (it should be noted that
some interactions were neglected, in particular, the inhibition of gene b by gene ¢ and the activation of gene b by gene d, in order to obtain a

network without cycles); ¢ — Boolean network

represented in various ways (Fig. 1). The simplest me-
thod is directed or undirected graph.

The directed graph G is a pair <V, E>, where V —
vertex set and £ — edge set. The vertices correspond to
genes (or other system components), while the edges,
indicated as a pair of vertices <i, />, correspond to the
regulatory interactions between the components. The
graph is directed if i and j are the head and tail of the
edge, respectively. The definitions of vertices and ed-
ges may be extended to store additional information
about the genes and their interactions. For instance, an
edge may be defined as <i, j, properties>. A slot pro-
perties may indicate whether one gene inhibits (—) or
activates (+) another one (see Fig. 1, a). Also properties
may be the list of regulators and their effect on this
edge, for instance <i, j ((k, activator), (I, inhibitor as a
homodimer protein))> [6].

Boolean networks. The level of gene expression in
Boolean synchronous networks is defined by the binary
variable which is either 0 or 1, i.e. the gene is either
knocked-out or expressing. The status of genes changes
at each discrete time step, that is why the networks are
called synchronous. A new status of the gene may de-
pend on the previous state of this gene and other genes.
N Boolean network nodes is N genes of the regulatory
network, & inputs of each node (here £ is the maximal
number of inputs for each node) is k interactions,
regulating the gene expression. k inputs into a specific
node determine the binary level of the expression for
the corresponding gene. As each vertex may be in two
states only, the network of N genes has 2" of different
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states. N- dimentional vector of variables may describe
the state at time ¢. The value of each variable at time ¢ +
1 depends on the input data, which may be computed
using Boolean functions. The number of probable
Boolean functions for the vertex with k inputs is 2*.
Let us consider an example of the rules, used for the
network, in Fig. 1, c:

at+1)=f,(a()) =a(1), k=1;
b(t+1) =1, (c(0),d()) =(=c()) nd(D), k=2
c(t+1)=f (a(t),b(t)) =a(t) A b(1), k=2
d(t+1)=f,(c(1) =(=c(1)), k=1

These rules may be used to create the table of
transitions from one state to the other, which
demonstrates that this network has two types of the
stationary behavior. Given the initial state a equals 0,
the system acquires stable state 0101, which means that
genes a, ¢ are knock-outs, while genes b, d are
knock-ins. Given the initial state a is 1, the system runs
into a cyclic path, constantly running the following line
of states: 1000 > — 1001 - 1101 - 1111 - 1010 —»
1000 [6].

The sequence of the states, formed due to Boolean
transformation, is the system trajectory. As the number
of states is finite, the set of possible transitions is also
finite. Thus, each trajectory leads either to the statio-
nary state or to the cyclic state. These states are called
attractors. All the states, leading to the same attractor,
form the attraction basin.
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The states of Boolean network

abed — a'b'c'd’

Interpretation of states at a = 0 Interpretation of states at a = 1

0000 — 0001 1000 — 1001
0001 — 0101 1001 — 1101
0010 — 0000 1010 — 1000
0011 — 0000 1011 — 1000
0100 — 0001 1100 - 1011
0101 —» 0101 1101 —> 1111
0110 — 0000 1110 - 1010
0111 — 0000 1111 - 1010

The Boolean networks are used to study general
properties of large gene networks. Viewing the random
Boolean networks (number of inputs & per one gene and
corresponding Boolean functions are selected at ran-
dom), Kauffman [7, 8] revealed that this system demo-
nstrates rather an ordered dynamics at small & values
and specific sets of rules. The average expected number
of attractors is /N , and the average length of attractors
is limited to the value in proportion to JN. Kauffman
made an assumption about the interpretation of the
number of probable attractors as the number of cells of
different types. This number is in good agreement with
currently known information about the types of cells
[9].

The algorithm, described in [10, 11], may be used
for reverse engineering of Boolean networks using the
data of microarray experiments. This algorithm defines
whether the vertex set v,, v, ..., v,, K < N explains the
expression of a specific vertex v. Boolean function
“activator-inhibitor”, described for the vertex v, may
be defined using the enumeration method, it is as
follows

VD)=V (D) Vv v, (DVe.) A=V (D VvV, (Dv...),

where the first bracket is activator vertices, and the se-
cond one is inhibitor vertices.

Obviously, given small k£ values, the algorithm
complexity is polynomial, but it may have considerable
effect on the quality of obtained network. As stated
above, the number of all the possible Boolean functions

equals 22 , thus, the increase in the value of & leads to
exponential complexity.

A more generalized and substantial approach to
solving the problem is found in [12—14], the authors of
which used the limited Boolean networks. In this case
the regulatory relations are presented by the matrix 4, ,
,» where a; = 1 at positive regulation of gene x, by gene
x; a,=-1 at negative regulation of gene x, by gene x;
and a; = 0 in other cases.

Thus, Boolean function f is defined in accordance
to matrix 4 and values of genes x,,j =1, ..., n'y at timet:

Lif D a,x (1)>0;
O,ifZaijxj(t)< 0;
xl.(t),ifZal.jxj(t) =0.

x (t+1)=

The sum Zaﬁx‘/ (#)>0— is the input of gene x,y
time ¢. As not dll the Boolean functions may be defined
in this representation, the Boolean network is conside-
red to be constrained. The reconstruction of gene net-
works is limited to solving the constraint satisfaction
problem (CSP).

CSP is defined by a set of variables X = {x, x,, ...,
x,}; tuples D= {D,, D,, ..., D,}, where D, — domain
tuple for x; constraints C = {C,, C,, ..., C,}, restricting
the values, which may be accepted by the variables si-
multaneously, where each set of C, has constraints of
the subset of variables and defines the feasible com-
bination of values for these variables. The solution of
CSP is the assigning to each variable x, the value from
its domain D to satisfy all the constraints in C [15].

CSP, defined in finite domains, are usually solved
by search algorithms, namely, by stepwise assignment
of possible values to the variables and verification of
the constraints satisfaction. The known algorithms are
backtracking, constraint propagation, and local search
[12]. The processes of selecting variables and assigning
some values to these variables depend on the order of
selection, therefore, there are many heuristic methods
to solve CSP [15] which has evident effect on the
reconstruction accuracy.
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In addition to the abovementioned problem, there
are a number of general drawbacks of the Boolean
network reconstruction using the real data [6]:

1. Binarization is a complex process, significantly
affecting the result. Sometimes it is hard to define the
exact binarization level using the expression data.

2. The states are incomplete. In practice most
transitions between the states are lost after the
binarization.

3. The existence of a large number of time points is
critical. Many transitions between the states are requir-
ed to distinguish correct states from incorrect ones and
to achieve a stable result.

4. Time points should not be very close to one ano-
ther. This is an unsteady balance between the highest
possible number of transitions between the states and
false-positive states. [f two time points are too close, the
transition between them does not demonstrate any
changes, as the binarization is a very rough threshold,
which does not allow distinguishing insignificant con-
centration variations. This leads to the occurrence of a
high number of false-positive cycles in the corres-
ponding graph.

It should be noted that Boolean networks are not
just a reconstruction method, rather it is the repre-
sentation method, therefore, many different approaches
are used for reverse engineering [16].

Thus, the Boolean gene network may be recon-
structed using the Information Theory as in the known
algorithm REVEAL [17]. However, the Information
Theory is a specific set of the reconstruction methods
requiring the discrete detailed review, so here we
confine to a mere mention [18-21]. As seen, the
classification of the reconstruction methods is not so
strict and the complex of approaches is often used to
solve the task of reverse engineering of gene networks.

The Bayesian networks reflect the regulatory
gene networks as a directed acyclic graph G =<V, E>.
Similarly to the definition for the usual graph, the
vertices i € Vcorrespond to the genes, and the edges —
to the regulatory interactions. The variables x, belong to
the vertices and define the regulatory properties, for
instance, the level of gene expression or the number of
active proteins. The conditional probability distr-
ibution p(x, | L(x,)) is defined for each x,, where L(x,) —
the variable, belonging to direct regulators i.
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The directed graph G together with the conditional
distribution describe the joint probability distribution
p(x), defining the Bayesian network. It may be consi-
dered as follows

P00 =T pCx 1 2x,)).

The directed graph reflects the probability depen-
dencies: the level of gene expression, presented by the
daughter vertex, depends on the expression level of
parent genes. Hence, the graph also has conditional
independencies i(x; y | z), which means that: x, does
not depend on y, given the availability of z. Two
graphs, reflecting the Bayesian network, are equi-
valent, if the sets of their independent relations are
equal. However, in this case they may be considered
only as equal undirected graphs. Completely equi-
valent graphs are impossible to reveal using the studies
of the variable x only [22].

For the network in Fig. 1, b, the conditional
independent relations are as follows [6]:

i(xa ;xb)'i('xd;xa ’xb|xc‘)’

while the joint probability distribution of the network
[6] is

p('xa 5X X, ’xd)z
=p(x,) px,) p(x, |x, ;x,) p(x,[|x,.).

The aim of reconstruction of gene regulatory net-
works from the expression data using the Bayesian net-
works is to find the network or the class of equivalent
networks, which explain the experiment data in the best
possible way. The problem is to define the initial
probability distribution. However, it is more reason-
able to use the dynamic Bayesian networks, which may
be considered as the expansion of common Bayesian
networks and which are capable of reflecting the
dynamics of gene networks. Given the variable of
time-series microarray experiment xe R"”, x,, where n
— the number of time points, and p — the number of
genes, is the observation of gene 7 at time ¢, then the
observation vector at time ¢/ may be presented as x, =

o
[x,, ...,x,,]" and i gene at all the time points is —x, =[x,
T
e X
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The dynamic Bayesian networks assume the tem-
poral dependence where the directed edges should
“move” forward with time [23].

There is a common assumption that these networks
are the first-order Markov model where each gene is
directly affected only by the previous genes [24]. As
these models are time-dependent, it is easy to create a
network with reverse cycles. Fig. 2 demonstrates a
simple transformation of a cyclic network of three ge-
nes into the acyclic dynamic Bayesian network [23].

The joint probability distribution for the dynamic
Bayesian network may be calculated as

P(x,, ,...,xnp)=I£[HP(x)”,\L(x”,).
i=1 t=1

As stated above, the main aim of the gene network
inference is the creation of such networks which would
present the best explanation of the experimental data.
This requires to find the structure and parameters of the
dynamic Bayesian network using the data. This task
may be formulated as follows.

Given the data from different time points, when D =
{x, ..., x,}, we should find the model M = (G, 0),with
the best correspondence to D, where M is defined by
the structure of the dynamic Bayesian network G, as
well as with the corresponding parameter © from the
family of conditional probability distribution.

According to the Bayes’ rule, the posterior distri-
bution of model M

P(M|D)=P(M)P(D|M),
P(D)

where the denominator P(D) = Z P(D | M)P(M) — a
normalizing factor, not dependent on M, thus, taking

Fig. 2 The transformation of a simple
network into the dynamic Bayesian
network [23]: a — simple gene
network, where X, and X, form a
cycle, and X, is self-regulated; b —
equivalent  dynamic  Bayesian
network without cycles

the logarithm, one can calculate the valuation function
for M [25]:

S(M)=log P(D|M)+logP(M),
where the parameter P(M) is a priori for the model, and
P(P(D| M)—marginal probability for the D data, given
the model is M.

P(D\M)=J P(D|6,G)P(0|G)dO,ne P(0|G)——a
priori distribution for the parameters. The selection of
optimal model M comes to the maximization of the
marginal probability.

To evaluate the integral, one can use Dirichlet dis-
tribution for discrete polynomial distributions and Wis-
hart distribution — for continuous gaussian distributions
[23].

Even given the evaluation function, finding an op-
timal dynamic Bayesian network for reverse enginee-
ring of gene networks is a very complicated task. Fir-
stly, the parent vertex set for each vertex is2", e N —
where N is the total number of nodes. Therefore, the
optimization task of finding the model with the highest
evaluation function is exponential [26].

Secondly, the search algorithm is not always suc-
cessful in finding the best model, usually only a local
maximum is reached, therefore, the only selected model
with the maximal valuation function is not always the
best.

There are several traditional approaches to solving
the above task. One of them is a greedy hill-climbing
search with random restarts [27]. A random network
model is selected for each restart. The mutation of this
basic structure occurs via addition or subtraction of one
edge. The algorithm defines all the possible mutations
of the basic structure and selects the one with the
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highest score, and then it becomes the basic one. This
procedure is repeated until the local maximum is
reached, then the model is saved, and the procedure
restarts. The result is the set of models, the number of
which equals to the number of restarts. This algorithm
is defined in the work [23]; it is formulated in pseudo-
code as follows:

Greedy Hill-Climbing Search with Restarts for DBN
Input: D (test data of time points))

N, (number of restarts)
Output: M, (set of models with the highest grades)

fori=1¢t N, do
produce random structure M,
repeat
M, M,
foreach pair of nodes in DBN do
if edge = 0 (no connection
between two vertices)
then
M « addEdge(M,)
else
M' < removeEdge(M,)
end
if score(M') > Score(M,,,) then
M, <M
end
end

until M,,, = M, (local maximum

best
is reached)
return M <« M,

out best

end.

Another class of heuristic algorithms, used to solve
the task of selecting the best model is theMarkov Chain
Monte Carlo (MCMC) method [28] with the
multivariate complex distribution. The mechanism of
this method is the creation of Markov chain, where a
new model M is generated only based on the previous
M. Finally there is a chain of models, coinciding with
the expected distribution. A sufficient condition for the
coincidence is the balance equation for all the models
[23]:
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P(M | M, )P(M|D)=P(M | M )P(M,|D),
where P(M,| M, ) — transition probability from P(M))
to P(M)).

One of important MCMC algorithms is
Metropolis-Hastings algorithm, based on the algorithm
of sampling — acceptance-rejection sampling algorithm
[29]. At each restart the algorithm generates a new
model, the candidate distribution Q(]\7I , M), which is
the probability of return of a new model M at given
model M. Given the candidate model M, it is possible
to calculate the probability of its acceptance

o( BT M) = min {LP(MD)Q(A@ M)},
P(M|D)Q(M| M)

If the probability satisfies these conditions, the Markov
chain selects the current candidate model. Let us refer
to the work [23] once again to illustrate the algorithm in
pseudocode:
Metropolis-Hastings sampling algorithm for DBN
Input: D (test data of time points)

N, (number of samples)

sam

Output: M, (chain of models)

Produce initial model M,
fori=1t N, do

sam

sample a new model M from Q(M, M)
compute ~ ~
(31 M) = min{l, P(M|D)O(M | M) }
P(M | D)YO(M|M )

sample u from U, (uniform distribution
to (0,1))
if (M, M) > u then

M+ 1« M

else
M+ 1« M,
end
return M , < M.,
end.

Besides, the application of MCMC to find the
optimal Bayesian network is a costly computational
task. An increase in the number of network nodes
results in the exponential increase in the algorithm
complexity [30]. Compared to the greedy hill-climbing
search with random restarts, MCMC demonstrates
better results and is faster [23].
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One of the examples of Bayesian networks infere-
nce software is Banjo, which studies the structure of
static and dynamic Bayesian networks (http://www.cs.
duke.edu/~amink/software/banjo/). The authors used
the greedy hill-climbing search with random restarts,
simulated annealing and genetic algorithms, which
demonstrated similar results under the condition of
long-term performance. However, each method requi-
res different different time to find the best network (20
genes per 2,000 points): on Dell PC, 2.26 GHz CPU, 1
GB RAM the greedy search was the fastest (minutes),
simulated annealing rated (dozens of minutes), while
the genetic algorithm was the slowest (hours) 31].

The Bayesian networks may be efficiently combi-
ned with other methods. For instance, in [32] the greedy
hill-climbing search by Banjo realization was used
along with LASSO (least absolute shrinkage and se-
lection operator) and Dantzig selector from the fa mily
of regressive methods.

Conclusions. The analysis of two different appro-
aches to solving the problem of reverse engineering of
gene networks demonstrates that the increase in the
number of genes in the network leads to the exponen-
tially complicated computational task.

In case of Boolean networks the binarization of the
gene expression value (active or passive) allows stu-
dying larger networks investigating their general pro-
perties. Besides, we can limit the number of regulators
of a specific gene, thus facilitating the algorithm to save
some time. However, the abovementioned facilitations
affect the network quality.

In case of Bayesian networks the presented algo-
rithms demonstrate that there is a high risk of getting
into a local maximum, as the exponential complexity
requires the application of heuristic algorithms.

In the author’s opinion better results in both cases
can be obtained by distributing the computing load
using the cluster of computers. It does not require the
algorithm parallelism, a simpler way is to distribute the
data among the cluster nodes. In addition, it is rea-
sonable to use ensemble-methods, i.e. combinations of
several approaches, which will definitely enhance the
engineering accuracy.

Thus, one may conclude that the algorithms of re-
verse engineering of gene networks on the basis of
Boolean and Bayesian networks require detailed ma-

thematical foundation, which would allow reconstru-
cting the network model with the most accurate corre-
spondence to the experimental data, as well as the
modern computing approaches in the informational
technology fields, sincethe considered methods do not
solve the problem of exponential search.

The author would like to express her gratitude to
Professor M. Yu. Obolenska, Dr. Sci. (biology), and
B. T. Tokovenko, Ph. D. (biology), (the Institute of
Molecular Biology and Genetics, NAS of Ukraine) for
their valuable advice and relevant remarks.
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OrJisix METOAIB MOJIEIIOBAHHS MEPEK
TeHHOI perysuil: Oynesi i 6aecoBi Mepexi

IHcTuTyTY MOJNIeKysipHOT Oionorii i renernkn HAH Ykpainu
Byi. Akaznemika 3abonornoro, 150, Kuis, Ykpaina, 03680

Pesrome

OoHieto 3 npodaem cyuacHoi cucmemHoi 6ion02ii € MoOenosanus me-
peoc 2eHHOI peeyaayiil, AKi Y HAUNOBHIUWOMY 6U2NAL BIOMBOPIOIONb pe-
2YNAMOPHI 83A€EMOOIT MidC 2eHamu 8cb0o2o opeanizmy. Haoszeuuaiina
0064UCTI0BANIbHA CKAAOHICMb Yi€T 3a0a4i ma 8i0CYMHICMb IPYHMOBHUX
0271016 MeMOoOi8 PeKOHCMPYKYII 2eHHUX MePedc € 3HAYHOIO NePeuKo-
0010 0715 NOOANBUO20 PO3BUMKY YbO2O HANPSAMKY CUCIEMHOI 6Ion02il.
V oaniu cmammi posensinymo 06a HaunowupeHiuux memoou mooe-
JIH0BAHHS Mepedic 2eHHOI pe2ynsayii: Oynesi i baecosi mepedici, ma Ha-
8€0eHO MAMeMamuyHull ONUC KOHCHO2O 3 HUX, d MAKOIC POZKPUMO
0eKLNbKA an2opUumMIYHUX ni0X00i8 00 MOOENIOB8AHHS 2EHHUX MEPEiC 3d
00NOMO20I0 YUX Memoois, 6KA3AHO HA CKIAOHICMb AN20OPUMMIE MA 3d-
3HAYEeHO NpodaIeMU, WO GUHUKAIONb NPU IXHbOMY 3ACMOCYBAHMI.

Kniouosi cnosa: pexoncmpykyis mepedxc 2ennoi pezynayii, 6ynesi
Mepedxci, baecosi mepedici.

A. O. @ponosa

0O030p METO10B MOZIEIUPOBAHHS CETEH T€HHON PEeryJIsALUu:
OyJeBBI K 6acCOBEI CETH

Pestome

Oo0Ha u3 npobrem co8pemenHol CUCEMHOU OU0I02UU — MOOeUPOBA-
Hue cemell 2eHHOU pe2yaayuu, 8 Hauboiee NOIHOU Mepe OModPaXCcaIo-
WuUx pecyisimopHble 83auUMo0etiCMEUs MeACOY 2eHAMU 6Ce20 OP2aAHU3-
ma. Bonvwas evruucaumenvras ciodcHocms maxkou 3a0avu U Omcym-
cmeue 0CHO8AMeNbHbIX 0030P08 MEMO008 PEKOHCMPYKYUU 2EeHHbIX Ce-
metl SGAAOMC 3HAUUMETbHOU Npe2pacoll 0isi OalbHeuue20 paseu-
mus 9Mo20 HAnpagienus cucmemnou ouonoeuu. B oannoii cmamoe
paccmompensl 08a Haubdoiee pacnpoCmpanenHblx Memood MOOeaupo-
8aHus cemell 2eHHOU pe2yaayuu: 6ynegvle u baecogvle cemu, a Marice
0aHO UX MameMamuiecKoe ONUCanue, a marKdice paAckpbino HeCKOIbKO
ANOPUMMUYECKUX NOOX0008 K MOOETUPOBAHUIO 2EHHBIX Ccemell ¢ No-
MOWBIO SMUX MEMOO08, VKA3AHbL CLONCHOCNIb AICOPUMMOB U NPodIie-
Mbl, KOMOPble BO3HUKAIOM NPU UX UCTOIb30GAHUU.

Knroueswvie cnosa: pekoncmpykyus cemeli 2eHHOU pe2yasiyuu, Oyne-
sble cemut, baecogule cemu.

169



FROLOVA A. O.

REFERENCES

1.

3.

4.

S.

8.

Lee W.-P., Tzou W.-S. Computational methods for discovering
gene networks from expression data // Brief. Bioinform.—2009.—
10, N 4.-P. 408-423.

. Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R.

Gene regulatory network inference: data integration in dynamic
models — a review // Biosystems.—2009.-96, N 1.—P. 86-103.
Karlebach G., Shamir R. Modelling and analysis of gene regula-
tory networks // Nat. Rev. Mol. Cell Biol.—2008.—9.—P. 770-780.
Ott S., Imoto S., Miyano S. Finding optimal models for small ge-
ne networks // Pac. Symp. Biocomp.—2004.-9.—P. 557-567.
Margolin A. A., Nemenman I., Basso K., Wiggins C., Stolovitzky
G., Favera R. D., Califano A. ARACNE: An algorithm for the re-
construction of gene regulatory networks in a mammalian cel-
lular context / BMC Bioinformatics.—2006.—7, Suppl. 1.-S 7.

. Klipp E. Systems biology in practice: concepts, implementation

and application.—New York: Wiley-VCH, 2005.-465 p.

. Kauffman S. Antichaos and adaptation // Sci. Am.—1991.-265,

N 2.-P. 78-84.
Kauffman S. The Origins of Order.—Oxford: Univ. press, 1993.—
709 p.

9. Kauffman S. Investigations.—Oxford: Univ. press, 2002.-308 p.

10.

1

—

12.

14.

15.

17.

18.

170

Akutsu T., Miyano S., Kuhara S. ldentification of genetic net-
works from a small number of gene expression patterns under
the Boolean network model // Pac. Symp. Biocomp.—1999.—4.—
P. 17-28.

.Martin S., Zhang Z., Martino A., Faulon J. L. Boolean dynamics

of genetic regulatory networks inferred from microarray time
series data // Bioinformatics.—2007.—23, N 7.—P. 866.

Higa C., Louzada V., Andrade T., Hashimoto R. Constraint-ba-
sed analysis of gene interactions using restricted boolean net-
works and time-series data / BMC Proceedings.—2011.-5,
Suppl. 2.-S 5.

.Lau K., Ganguli S., Tang C. Function constrains network archi-

tecture and dynamics: a case study on the yeast cell cycle Boole-
an network // Phys. Rev. E. Stat. Nonlin. Soft Matter Phys.—
2006.-75, N 5, pt 1.-051907.

Xia Q., Liu L., Ye W., Hu G. Inference of gene regulatory net-
works with the strong-inhibition Boolean model // New J.
Phys.—2011.-13, N 8.-083002.

Tsang E. P. K. Foundations of constraint satisfaction.—London;
San Diego: Acad. press, 1993.-405 p.

. Lee W.-P., Tzou W.-S. Computational methods for discovering

gene networks from expression data // Brief Bioinform.—2009.—
10, N 4.-P. 408-423.

Liang S., Fuhrman S., Somogyi R. Reveal, a general reverse engi-
neering algorithm for inference of genetic network architectures
// Pac. Symp. Biocomp.—1998.—3.—P. 22.

Zola J., Aluru M., Aluru S. Parallel information theory based con-
struction of gene regulatory networks // Hipc.—2008.—5374.—
P. 336-349.

19.

20.

2

—

22.

23.

24.

25.

26

27.

28.

29.

30.

31.

32.

Margolin A. A., Nemenman 1., Basso K., Wiggins C., Stolovitzky
G., Favera R. D., Califano A. ARACNE: An algorithm for the re-
construction of gene regulatory networks in a mammalian cel-
lular context / BMC Bioinformatics.—2006.—7, suppl. 1.-S 7.
Zola J., Aluru M., Sarje A., Aluru S. Parallel information-theo-
ry-based construction of genome-wide gene regulatory net-
works // IEEE Transactions on Parallel and Distributed Sys-
tems.—2010.-21, N 12.-P. 1721-1733.

.Daub C. O., Steuer R., Selbig J., Kloska S. Estimating mutual in-

formation using B-spline functions-an improved similarity mea-
sure for analyzing gene expression data / BMC Bioinforma-
tics.—2004.—5-P. 118.

Friedman N., Linial M., Nachman 1., Pe’er D. Using Bayesian
networks to analyze expression data // J. Comp. Biol.-2000.-7,
N 3-4.—P. 601-620.

Wu H., Liu X. Dynamic bayesian networks modeling for infer-
ring genetic regulatory networks by search strategy: Compa-
rison between greedy hill climbing and memc methods // Proc.
World Acad. Sci., Engin. Technol.—2008.-34.—P. 224-234.
Sima C., Hua J., S. Jung S. Inference of gene regulatory net-
works using time-series data: A survey // Curr. Genomics.—
2009.-10, N 6.-P. 416-429.

Yu J., Smith V. A., Wang P. P., Hartemink A. J., Jarvis E. D.
Using Bayesian network inference algorithms to recover mole-
cular genetic regulatory networks // 3" Int. Conf. Syst. Biol.
(ICSB02).—Stockholm, 2002.

. Chickering D., Heckerman D., Meek C. Large-sample learning

of Bayesian networks is NP-hard // J. Mach. Learn. Res.—
2004.-5.—P. 1287-1330.

De Campos L., Fernandez-Luna J., Puerta J. An iterated local
search algorithm for learning Bayesian networks with restarts ba-
sed on conditional independence tests // Int. J. Intellig. Syst.—
2003.-18, N 2.-P. 221-235.

Scollnik D. An introduction to Markov Chain Monte Carlo me-
thods and their actuarial applications // Proc. Casualty Actuarial
Soc.—1996.-83.—P . 114-165.

Chib S., Greenberg E. Understanding the Metropolis-Hastings
algorithm // Am. Statistic.—1995.—49, N 4.—P. 327-335.
Friedman N., Koller D. Being Bayesian about network struc-
ture. A Bayesian approach to structure discovery in Bayesian
networks // Machine Learning.—2003.-50, N 1.—P. 95-125.

Yu J., Smith V., Wang P., Hartemink,A., Jarvis E. Advances to
Bayesian network inference for generating causal networks from
observational biological data // Bioinformatics.—2004.-20,
N 18.-P. 3594-3603.

Vignes M., Vandel J., Allouche D., Ramadan-Alban N., Cierco-
Ayrolles C., Schiexet T., Mangin B., de Givry B. Gene regulatory
network reconstruction using Bayesian networks, the dantzig se-
lector, the lasso and their meta-analysis / PLoS ONE.-2011.—6,
N 12.-€29165.

Received 11.11.11



