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Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures
of newborn rats exposed to prenatal immobilization (IMO) stress. Methods. Histochemical method on detection
of Ca’'-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures
with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the
hypothalamic neuroprotective proline-rich polypeptide PRP-1 (aka Galarmin, a natural cytokine of a common
precursor to neurophysin vasopressin associated glycoprotein) have been revealed in several brain regions.
Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1
involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as
well as in the neurons and nerve fibers.

Keywords: rat brain plasticity, prenatal immobilization stress, GFAP-, nestin-, stem cells-, and PRP-1-immuno-
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Introduction. A new type of cytokines of the neurosec-
retory hypothalamus, the proline rich peptides, isolated
from bovine neurohypophysis neurosecretory granules
are synthesized in the form of a common precursor pro-
tein (neurophysin vasopressin associated glycoprotein)
[1]. In the biochemical, immunological, and physiolo-
gical studies, proline-rich peptide-1 (PRP-1, 15 amino
acid residues) has been shown to possess antitumor
effect [2, 3]; strong antiviral and antibacterial activity
[4-6]. Under several pathological conditions, PRP-1
has been shown to be a universal neuroprotector and
neuromodulator [7, 8]. Our previous report on the ef-
fects of PRP-1 on spinal cord (SC) injured rats indica-
ted the possibility of PRP-1 involvement in the mecha-
nisms of neuronal repair.
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Neuroplasticity is a nervous system ability to chan-
ge at any age and modify its organization and function.
Adult brain cell regeneration (neurogenesis, the pro-
cess of generating new neurons) is demonstrated in ma-
ny species, including rodents. Its primary functions are
to maintain cell homeostasis and to replace cells that
die because of injury or disease [9, 10]. The list of adult
tissues reported to contain stem cells is growing and in-
cludes bone marrow, peripheral blood, brain, spinal
cord. Brain plasticity and behavior can be influenced
by myriad of factors, including drugs, hormones, matu-
ration, aging, disease, and stress.

Understanding how these factors influence brain or-
ganization and function is important not only for under-
standing both normal and abnormal behavior, but also
for designing treatments for behavioral and psycholo-
gical disorders.
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The purpose of the present histochemical and immu-
nohistochemical study was to examine the stress-indu-
ced response of brain structures in the rats exposed to
the prenatal immobilization (IMO) stress, and to inves-
tigate the mechanisms underlying the putative neuroge-
nesis processes.

Materials and methods. White laboratory male
rats, 80—100 g body weight, were divided into two gro-
ups: 1) intact rats (n =5), and 2) rats exposed to the acu-
te 120 min prenatal immobilization stress (n = 3).

Following the anesthesia with Nembutal (40—50 mg/
kg), non-perfused control and experimental rats were
decapitated and the brains and spanal cords were rapidly
removed and fixed in 4 % paraformaldehyde prepared in
0.1 M phosphate buffer, pH = 7.4 for 48 h at 4 °C. Then,
the tissues were cryoprotected for 24 h in 0.1 M phos-
phate buffered saline containing 30 % sucrose.

50-um free-floating freezing microtome sections
were then processed using immunohistochemistry with
the Avidin-Biotin-Peroxidase Complex technique [11]
and histochemistry by the method on detection of Ca*'-
dependent acid phosphatase (Aph) activity [12].

The primary polyclonal antiserum against the PRP-
1 in 1:5000 dilution obtained by us according to Ambro-
sius [13] and monoclonal antisera against the neuroepi-
thelial stem cell marker nestin, astrocytes marker GFAP
and mouse stem cells in 1:2000 dilution were used for
immunohistochemistry.

Results and discussion. According to histochemi-
cal data regarding the Aph activity detection in respon-
se to IMO stress, densely stained cells of different sizes
and shapes are found in the brain white matter (Fig. 1,
see inset). Cells resembling mesenchyme cells (Fig. 1,
C) and many round cells in a blood vessel (Fig. 1, D)
are demonstrated in the cerebellum. A number of cells,
most likely pericapillary pericytes, covered the capil-
laries and situated in the perivascular area (Fig. 1, E, F).

Angiogenesis in the developing tissue is known to
be a universal process accompanying, in fact, practical-
ly all morphological events. And very often, the vessels
growth, in particular, determines the intensity of prolife-
ration, differentiation, and formation of new histolo-
gical structures. Angiogenesis mentioned seems to be
the exact reflection of the results presented by Pelletier
and coworkers [14], who demonstrated a culture sys-
tem for human bone marrow endothelial cells that un-
der the action of tachykinins organize into capillary tu-
bes associated to pericytes.
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It is also known that transplanted bone marrow (BM)
cells in the brain can differentiate into parenchymal mic-
roglial cells and perivascular cells [15].

There was determined that environmental changes
could alter behavior and cognition by modifying con-
nections between existing neurons and via neurogene-
sis in the hippocampus and other parts of the brain, in-
cluding SC and the cerebellum [16].

Immunohistochemical analysis revealed tha PRP-
l-immunoreactive (PRP-1-Ir) varicose fibers and vari-
cosities surrounded the cells in almost all brain regions
including the n. Cochlearis (Fig. 2, 4, see inset) and are
scattered among the blood vessels in the SC (Fig. 2, B,
see inset). A number of cells localized on the capillaries
and in the perivascular area in the brain white matter
(Fig. 2, D, see inset) were observed.

GFAP-Ir small cells, resembling the radial astrocy-
tes, with many tortuous processes in close vicinity to
arteriols and capillaries were revealed in those cytoar-
chitectural zones where their small population is deter-
mined: subgranular zone of the hippocampal dentate gy-
rus, spinal cord (Fig. 3, 4, B, see inset) and cerebellum
(Fig. 3, D-G, see inset), periventricular zone of adult
brain, olfactory system, region under the pia mater, sub-
ependimal zone [17].

A number of dense nestin-Ir cells of different sizes
and shapes are revealed in various brain regions: fusi-
form cells (Fig. 4, B, see inset) in n. Facialis, triangular
(C, see inset), roundish (D, see inset), cells with very
short processes and negative nucleus (£, see inset) and
with an axon and densely stained ectopied nucleus
(Fig. 4, F, see inset) in the SC anterior horn.

It is notable that round in morphology cell structu-
res situated on the blood vessel in different brain regions
demonstrate Ir for all antisera used (Figs 2, C; 3, 4, B, F;,
4, A, D, see inset) and strong Aph activity (Fig. 1, D, see
inset).

Brain plasticity occurs in the brain under two pri-
mary conditions: during normal brain development and
as an adaptive mechanism to compensate for lost func-
tion and/or to maximize remaining functions in the
event of brain injury. New neurons are generated throu-
ghout life from a population of dividing cells known as
neural stem/progenitor cells (NPCs) that can differen-
tiate into three main lineage cell types of the nervous
system (neurons, astrocytes, and oligodendrocytes)
when cultured in vitro. So, from NPCs in non-neuroge-
nic regions giving rise to neurons mediated by the local
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Fig. 1. Brain structures in rats exposed to prenatal stress. Two cells being
in close contact via a short process (4) and a large cell, half of which is
yet located in the SC central canal (B), cells resembling mesenchyme
cells (C) and many round-shape cells in the blood vessel (D) are demon-
strated in the cerebellum. A number of cells, most likely pericytes, are si-
tuated on an artheriol and in the perivascular area (£, F'). Histochemical
method on detection of Ca*-dependent acid phosphatase activity; x 1000

Fig. 3. GFAP Immunoreactiv structures in the brain of rats exposed to
prenatal immobilization stress. A—C — GFAP-Ir structures in the SC.
GFAP-Ir astrocytes are well seen in close proximity with the blood
vessels in the SC (4, B) and cerebellar white matter (D—G); C— GFAP-Ir
cell structures of different size are found in the SC dorsal horn. GFAP-Ir
roundish in morphology structures are demonstrated inside of vessels in
the SC (4, B) and cerebellar white matter (F). ABC immunohistochemical
method; 4, C, D, E — x400); B, F, G — x 1000
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Fig. 2. PRP-1-Ir (4-C) and stem cells-Ir (E, F) structures in rats exposed
to prenatal stress. PRP-1-Ir varicose fibers and varicosities surround cells
of different sizes and shapes in the n. cochlearis (4) and are scattered
among the blood vessels in the SC (B). Round in morphology cells are
situated on the blood vessel (C); a number of cells are situated in the capi-
llaries and the perivascular area in the brain white matter (D). Cells being
in the proliferation stage (E) and small cells with the long and tortuous
processes (F) demonstrate stem cells-immunoreactivity. ABC immuno-
histochemical method; 4, B, D — x400; C, E, F — x 1000
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Fig. 4. Nestin-immunoreactive structures in the spinal cord and medulla
oblongata of rats exposed to prenatal immobilization stress. Dense nes-
tin-Ir cells of roundish shape (4) in the n. deiters and fusiform cells (B)
inthe n. facialis are demonstrated. C—F — nestin-Ir structures in the SC an-
terior horn; C—F — a number of nestin-Ir cells of different size are revea-
led: C — triangula; D — roundish; £ — with very short processes and negative
nucleus and F — with an axon and densely stained ectopied nucleus. ABC
immunohistochemical method; 4 — x 160); C—x400; B, D, E, F — x 1000
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astrocyte populations. The environment has also been
suggested to play a key role in influencing plasticity.

In the present study we demonstrate a number of
cells being in the proliferation stage (Fig. 2, E) and
small cells with the long and tortuous processes (Fig. 2,
F) immunoreactive for stem cells marker.

The main function of most of the multipotential pro-
genitor cells situated in the periventricular zone of the
forebrain and surrounding the SC central canal area in
adult rodent CNS [18-21] is to migrate into the olfac-
tory lobe to produce new neurones and glial cells in the
normal brain [19]. It was shown in the injured SC that
nestin-expressing periventricular cells start to migrate to
the site of injury and to express GFAP [22]. There are
also experiments in which the axons have clearly been
able to regenerate in vivo on astrocyte processes [23].

Previously PRP-1-immunoreactivity was noticed in
spinal glial cells both in the white matter and among the
PRP-1-Ir MNs in the SC injured rats [7]. Besides, in SC-
hemisectioned and treated with Central Asian Cobra Naja
naja oxiana snake venom (NOX) rats [24] NOX has been
found to result in the survival of the PRP-1-Ir neurons and
increase of PRP- 1-Ir nerve fibers and astrocytes.

Bone marrow-derived stem cells are tissue-specific
stem cells that are capable of self-renewal and can dif-
ferentiate into cells of different tissues, including matu-
re lineages of blood cells, neural cells both in vitro and
in vivo, stromal and skeletal tissue [25].

Brain cells born in the fluid-filled ventricle migrate
to the olfactory bulb via this small «superhighway» that
connects them [26]. Pluripotent mesenchimal stem cells
purified by Jiang et al. [27] and named multipotent
adult progenitor cells (MAPCs) could differentiate into
both mesenchimal and neural cells. One marker that is
actually detected at the immunohistochemical level in
MSCs is nestin [28, 29].

Appearance of a large cell, half of which is yet
located in the SC central canal (Fig. 1, B) and PRP-1-Ir
cells migrating from the SC central canal towards the
injury area [25] allowed us to assume that they could be
the BM-derived neural progenitor cells.

The stimulatory effect of PRP-1 in formation and
differentiation of BM stem cells [30, 31] as well as in
increase of PRP-1-Ir hematopoietic and mesenchimal
cells (not published) of rats exposed to IMO has been
suggested. Synthesis of PRP-1 in the immune system
cells cannot be excluded, as well, since there is a recent
evidence regarding the in vitro synthesis of PRP-1 in
lymphocytes, isolated from BM.

Conclusions. Localization of the hypothalamic neu-
roprotective proline rich polypeptide in the above men-
tioned cell structures of the injured brain and SC im-
munoreactive to GFAP, nestin, and stem cells together
with neurons and nerve fibers confirmed our suggesti-
on that PRP-1 could be involved in this recovery me-
chanism, and supported the hypothesis of its role as neu-
ro-immunological links.

C. C. Abpamsn, 1. b. Menikcemsn, 1. K. Caaxan, H. B. Tymacsn,
B. IO. Baoansn, A. A. I'anosn

IInacTuuHicTh MO3KY IypiB Hicis Aii BHYTPILIHEOYTPOOHOTO
iMMoOini3ariifHoro crtpecy

Pestome

Mema 0arnozo 2icmo- ma iMyHOICMOXIMIUHO20 Q0CAIOMICEHHS NONAA-
a4 Y 6UBYEHHI KIIMUHHUX CIMPYKIYP MO3KY HOBOHAPOOICEHUX WYDI6
nicas 0ii’ 6HympiuHboympobnoeo immoobinizayivinozo cmpecy (IMO).
Memoou. Iicmoximiunuii memoo euseirenns axmugnocmi Ca’ -3anednc-
Hoi kuciaoi pocpamasu ma ABC-imynozicmoximiunuii memoo. Pe3ynp-
mamu. Y piznux 6i00inax mo3xy y 6ionosioo na IMO eusnaueno xii-
MUHHI CMPYKMYPU, SKi MICmMsAms MapKepu paoiaibHuxX acmpoyumis
GFAP, cmoebyposux KiimuH muuell, HeupoenimeuiaibHux cmosoypo-
BUX KIIMUH HECMUHY | 2INOMANAMIYHO20 HelPponpomeKmopHo2o baza-
moeo na nponin noninenmudy, PRP-1 (npupoonuii yumoxin nio nazeoro
Tanapmin, nonepeonuKom Koo € Hetlpopizun-6azonpecun-acoyiiosa-
Hull enikonpomein). Bucnoexu. Busenenns PRP-1 y euwesasnauenux
KAIMUHHUX CIPYKMYPAX NOPsO 3 HelPOHAMU | HEPBOBUMU BOLOKHAMU
8KA3YE HA NPOYEC YMBOPEHHS HOBUX HEUPOHI8 Y 8i0n06idb na IMO ma
sknouents PRP-1y mexanizm 0ano2o 6i0H081108AIbHO20 NPoYecy.

Kntouosi cnosa: nriacmuynicms MO3Ky wypie, 6HympiuiHboympoo-
Hul IMMOOLNI3aYiliHULL cmpec, IMYHOPeaKmuHicms cmosoyposux Kii-
mun PRP-1, GFAP i necmumny.

C. C. Abpamsn, U. b. Menuxcemsan, U. K. Caaxsn, H. B. Tymacsn,
B. IO. Baoanan, A. A. I'anosn

[InacTU4HOCTD MO3ra KpPbIC, MOABEPIKEHHBIX BHYTPUYTPOOHOMY
UMMOOHIIM3aLIMOHHOMY CTpeccy

Pestome

Lenv oannoeo eucmo- u UMMYHOSUCMOXUMUYECKO20 UCCAEO08AHUS
coCmoAna 8 uzyueHuu KiemouHblX CMpyKmyp M032a HOBOPOICOCHHBIX
Kpblc, NO0BEPUUXCS  GHYMPUYMPOOHOMY  UMMOOUIUZAYUOHHOMY
(UMO) cmpeccy. Memoowt. [Ipumenensi eucmoxumuyeckuii Memoo
eviaenenus akmusnocmu Ca’* -3asucumoti kucnoii pocgpamasvr u ABC
umMMyHo2Ucmoxumudeckuii memod. Pezynemamol. B paziuunvix om-
oenax mosea 6 omeem na MO onpedenenvl Kiemounvie CmpyKmypbi,
cooepoicawyue mapkepul paouanbiuix acmpoyumos GFAP, cmeonosuix
Kemox Moluiel, HetipoINUMeNUaNIbHbIX CHBON08bIX KNeMOK HeCHUHA
U 2UNOMANAMULECKO20 HEeUPONPOMEKMOPHO20 NPOIUH-002aN020 no-
aunenmuoa, PRP-1 (npupoouwiil yumokun noo naseanuem I arapmun,
NpeouecmeeHHUKOM KOMOpo2o AGIsAemcs Heupopusun-easonpec-
CUH-accoyuuposannviil  2aukonpomeut). Bovteoovr. Obuapyscenue
PRP-1 6 6viuteynomManymoix KiemouHslX CIMpyKmMypax emecme c Heli-
POHAMU U HEPBHBIMU BOJIOKHAMU YKA3bI6AEN HA NPOYecc 00pa308anUs
Hosbix Heliponos 6 omeem Ha UMO u exnrouenue PRP-1 6 mexanusm
0aHHO20 60CCMANOBUMENLHO20 NPOYECCd.

Kntouesvie cnosa: niacmuunocms moszea Kpvlic, 6HYmMpuympoonulii
UMMOOUNUBAYUOHHBILL CIMPECC, UMMYHOPEAKMUBHOCHb CMBOJIO0BbIX
knemox PRP-1, GFAP u necmumna.
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