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Aim. The aim of this research is to study the possibility to supply the nano-scale liposomal «containery,
used for the targeted substance delivery inside the living cells, with a «signal system» to trace the liposome
fate in real time. Methods. For this purpose, the methods of fluorescence microscopy, fluorescence spect-
roscopy and microspectroscopy have been used. Results. The cellular uptake of hydrophobic fluorescent
probes DiO and Dil, preloaded in phosphatidylcholine (PC) liposomes, in real time has been studied using
fluorescence resonance energy transfer (FRET) from the donor probe DiO to the acceptor one Dil. It has
been revealed that after 3 hours incubation of hepatocytes with FRET liposomes, the FRET signal almost
disappears, whereas DiO fluorescence becomes very intensive. Conclusions. The loss of FRET signal could
be used as a «signal systemy to monitor the cell-liposome fusion and delivery of any active compounds to

cells.
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Introduction. Among the widely studied drug delivery
vehicles, liposomal ones are of special interest due to
their attractive properties [1-3]. Liposomes consist of
aqueous core entrapped by one or more bilayers of na-
tural and/or synthetic lipids that allows solubilization
of both water-soluble and lipo-soluble compounds.
Liposomes, composed of natural lipids, are biodegra-
dable, biologically inert, weakly immunogenic and
possess limited intrinsic toxicity [4]. Moreover, lipo-
somes afford a unique opportunity to deliver the drugs
into cells by fusion or endocytosis mechanism, i. e. by
the atraumatic for cells way [3, 4]. Liposomes can pro-
vide targeted delivery of active compounds into sites of
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action in living cells that is very attractive for medical,
biological and pharmaceutical applications [3, 4].
However, a lot of questions are still open. Fluorescent
imaging has become an invaluable tool in biomedical
researches that can trace the liposome fate in a living
cell and help answer many questions including the
pathway for cellular internalization of liposomes and
incorporated active compounds. For this purpose, a li-
posome should be supplied with special «signal sys-
tem» that traces the liposome fate and visualizes the
active compound release. Fluorescent probes can play
this role [4].

In this study, we investigate in real time the cellular
uptake of hydrophobic fluorescent probes preloaded in
phosphatidylcholine (PC) liposomes. For this purpose

47



YEFIMOVA S. L. ET AL.

Fig. 1. Structural formulas of fluorescence probes: a — 3,3'-diocta-
decyloxacarbocyanine perchlorate (DiO); b — 1,1'-dioctadecyl-3,3,
3',3'-tetramethylindocarbocyanine perchlorate (Dil)

we used such a fundamental phenomenon in fluores-
cence spectroscopy as fluorescence resonance energy
transfer (FRET). FRET is a transfer of electronic ex-
citation energy from one molecule (donor) to other mo-
lecule (acceptor) without intermediate photon emission
through long-range dipole-dipole interactions [5]. Sin-
ce FRET efficiency depends critically on the separation
between the donor and acceptor molecules, it is widely
used to study a variety of biological processes asso-
ciated with the intermolecular distance changing [5].
FRET is one of the powerful biophysical methods to
characterize the interactions between molecules loca-
ted at small distances (up to 10 nm) [5]. In molecular
biology FRET is very often used to analyze the spatial
structures of macromolecules (as protein folding, DNA
packaging, etc.), supramolecular structures (as ligand
receptor interactions, etc.), and the interactions among
molecular membrane components [5]. In our research,
hydrophobic dyes 3,3'-dioctadecyloxacarbocyanine
perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetra-
methylindocarbocyanine perchlorate (Dil) were used
as energy donor and acceptor, respectively (Fig. 1).
The pair of DiO and Dil dyes is used in various FRET-
based applications [4, 6, 7]. In our case, the dyes were
pre-loaded in lipid bilayers of PC liposomes that en-
sured the required distance between the donor DiO and
the acceptor Dil to realize FRET. The release of the
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dyes from liposomes causes a loss of the FRET effect
due to an increase of the donor-acceptor distance [5].

Materials and methods. Chemicals. Fluorescent
probe DiO was synthesized in the Institute for Scintil-
lation Materials NAS of Ukraine by Dr. 1. Borovoy.
The purity of the dye was controlled by thin layer chro-
matography. Dye Dil and L-o-phosphatidylcholine
from egg yolk were purchased from «Sigma-Aldrich»
(USA) and used without purification. Chloroform
(«Sigma-Aldrich») used to prepare lipid and dye stock
solutions was a spectroscopic grade product. Dimethyl
formamide (DMF, «Sigma-Aldrich») was also of spec-
troscopic grade.

Preparation of lipid vesicles with DiO and Dil pro-
bes. Unilamellar PC lipid vesicles containing DiO and
Dil dyes were prepared by the extrusion method [8].
Briefly, appropriate amount of PC (50 mg/ml) and dyes
(10 M) stock solutions in chloroform were mixed in a
flask and dried until complete chloroform evaporation.
The thin lipid-dyes film was then hydrated with 2 ml of
Eagle’s medium + 10 % fetal calf serum (pH 7.4). The
obtained lipid-dyes suspension was finally extruded
through 200 nm pore size polycarbonate filter. The
concentrations of the DiO and Dil dyes in liposomal
suspension were 2:10~° M. In order to ensure that the li-
pid mixture was in equilibrium state, the prepared vesi-
cles rested overnight at 22 °C and the measurements to-
ok place on the following day.

Cell labeling procedure. The experiments were
carried out using freshly isolated hepatocytes of three-
month Vistar-rats males. Hepatocytes were derived
from rat liver by the non-enzymatic method [9] with
following washing-out with Eagle’s medium with 10 %
fetal calf serum. The cells pellet (50 pl 107 cells/ml)
were incubated with liposomal suspension (50 pl) in
1 ml of Eagle’s medium with 10 % fetal calf serum at
37 °C for required time intervals (1, 2, 3 and 20 h). Af-
terwards non-bound liposomes were removed by cen-
trifugation at 500 g and washing-out by adding HBSS
(HEPES buffered saline solution) buffer (pH 7.4) with
0,1 % BSA.

Cell imaging, microspectroscopy and spectrosco-
py. Cell imaging was performed using inverted fluores-
cent microscope Olympus 1X71 with digital camera
Olympus C-5060. BP 460—490 and BP 510-550 filters
were used to excite DiO and Dil, respectively. To study
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Fig. 2. Fluorescence spectra of liposomal suspensions: / — DiO-loa-
ded liposomes; 2 — Dil-loaded liposomes; 3 — FRET liposomes. The
fluorescence was excited at 460 nm
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Fig. 3. Fluorescence spectra of DiO and Dil probes in different me-
dia: / — DMF; 2 — liposomes

FRET in cells, BP 460—490 filter was used. Micro-
spectroscopy at the area of interest was carried out
using spectral detector USB 4000 (Ocean Optics) con-
nected with Olympus IX71. Fluorescence spectra of the
liposomal suspensions with fluorescent probes were
obtained using a spectrofluorimeter on the base of two
grating monochromators MDR-23 and a xenon lamp.
One of the monochromator was used to select a re-
quired wavelength (full width at half maximum,
FWHM = 0,5 nm), the other one was used for the fluo-
rescence collection.

Results and discussion. The fluorescence of the li-
pid suspension with the dyes was excited at 460 and
490 nm to pattern the excitation in a fluorescent micro-
scope (BP 460—490 filter). Forced concentration of
hydrophobic fluorescent probes in liposome lipid bi-
layers ensures the required distance between the donor
DiO and acceptor Dil to observe FRET (Fig. 2, curve
3). The FRET ratio calculated as 7,/(/, + I;), where
and / are fluorescence intensities of Dil at 570 nm and
DiO at 504 nm, respectively, was 0.98. To estimate the
contribution of the donor emission in the FRET spect-
rum and the acceptor direct excitation at 460 nm, fluo-
rescence spectra of liposomes with DiO only and lipo-
somes with Dil only were measured (Fig. 2, curves 1,
2). As one can see from Fig. 2, the contribution of DiO
to Dil emission can not be taken into consideration,
because the FRET DiO fluorescence is absent (Fig. 2,
curve 3). The direct excitation of Dil at 460 nm (Fig. 2,
curve 2) is small as compared with the total Dil signal
of FRET liposomes (Fig. 2, curve 3). At 490 nm exci-
tation, Dil emission signal is stronger, but the total Dil
signal of FRET liposomes is also stronger. So, the ratio
Dil alone/Dil in FRET liposomes remains the same.

When in a solution there are no «containersy that
ensures the required distance between the donor and
acceptor molecules, the energy transfer disappears
(Fig. 3, curve I). Fig. 3 represents fluorescence spectra
of DiO and Dil dyes in DMF and liposome suspension.
As one can see, in DMF, where both DiO and Dil are
soluble, at the same dyes concentration, FRET is
almost not observed. In such a solution, the FRET ratio
I/(I; + I;) is 0.23 vs 0.98 observed in liposome
suspension.

Therefore, we can suppose that the damage of
liposomes as a result of the liposome-cell interaction
will cause the release of the dyes from liposomes and
loss of the FRET effect due to an increase of the donor-
acceptor distance [5]. So, the loss of FRET signal could
be used as a «signal system» to monitor the delivery of
any active compounds to cells.

To monitor the dynamics of the DiO and Dil release
from the PC liposomes, the liposomes were mixed with
the cell suspension as described above and incubated
during different time periods. During the experiment,
we control both DiO and Dil fluorescence changes de-
pending on incubation time. Fig. 4, see inset, represents
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Fig. 5. Fluorescence spectra recorded from hepatocytes incubated with FRET liposomes during different time periods (a: / — FRET
liposomes without cells; 2—0 min; 3—1 h; 4—3 h; 5 — 20 h; excitation with BP 460490 filter); and changes in time of DiO, /5/(/ + Iz), and

Dil, Iz/(Ig + Iy), relative fluorescence signals (b)

fluorescent images of the cells taken over different time
periods. Fluorescence spectra recorded from the fluo-
rescent cell areas using a spectral detector connected
with a fluorescent microscope are shown in Fig. 5, a.
Fig. 4, a (see inset) shows that immediately after the
cells-liposome mixing and further washing out, the cell
fluorescent image is represented by the cell autofluo-
rescence. One can also observe FRET liposomes bound
to the cell membrane. Fluorescent spectrum recorded
from this cell is presented in Fig. 5, a, curve 2. This
spectrum is almost identical to the one recorded from
the FRET liposomes (Fig. 5, a, curve I, FRET ratio
I/(I; + 1) is 0.78) with a slight contribution of the
autofluorescence peak at 520 nm. After 1 h incubation,
a redistribution of DiO and Dil peaks in the fluo-
rescence spectrum can be observed (Fig. 5, a, curve 3).
The DiO fluorescence ratio /(I + I,) increases from
0.2 to 0.43, while the FRET ratio /,/({; + I,,) decreases
from 0.78 to 0.56 (Fig. 5, b). Fig. 4, images a—e (see
inset), represents the changes in DiO fluorescence in-
tensity depending on the cell-liposome incubation pe-
riod. As we can see from Fig. 5, a, b, after 3 hours incu-
bation, the DiO/Dil fluorescence signal redistribution
is finished. The DiO fluorescence signal becomes more
intensive than the Dil one, /./({; + I,) and [,/(I. + [)
ratios are 0.62 and 0.37, respectively (Fig. 5, a, b).
Further increase in incubation time does not cause the
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DiO/Dil ratio increase, and even during 20 h incubati-
on theratio is just the same (Fig. 5, b). However, the in-
tensity of DiO and Dil fluorescence increases gradually
in time (Fig. 4, see inset, and Fig. 5, a).

Thus, the decrease of Dil fluorescence signal in ti-
me and increase of DiO fluorescence indicate a release
of the probes from the liposomes as the result of the
cell-liposome interaction where the FRET effect is sig-
nificantly diminished. On the other hand, such a result
could be observed, if the dyes DiO and Dil escape from
the liposomes in time due to liposome instability etc.
Literature analysis [1, 6, 7, 10] and our investigations
revealed that in the analyzed time period (20 h) PC li-
posomes are stable and the hydrophobic probe leaka-
ge is not observed. Moreover, our studying the effici-
ency of hydrophobic dye binding to the cell membrane
model system (surfactant micelles) shows that DiO and
Dil are characterized by high binding ability [11]. So,
we can conclude that the decrease in the FRET effi-
ciency in time is caused by the DiO and Dil interna-
lization as a result of cell-liposome binding that does
not ensures the required for FRET distance between the
donor and acceptor. Fig. 4, images ¢ and f, show that af-
ter 20 h cells-liposomes incubation, both dyes are ob-
served in cells in large amount, the intensities of green
and red (excitation with a BP 510-550 filter) signals
are very strong.
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It is known that liposomes can penetrate into cells
by different mechanisms: 1) fusion of liposomal vesi-
cle membrane and cell membrane; 2) endocytosis me-
chanism; 3) liposome adsorption on a cell membrane
with a subsequent facilitated diffusion of the active
component into the cell; 4) active liposome transport
[12]. At this stage of our research we can not specify
the way of liposome uptake. In [7] the authors suggest a
membrane-mediated pathway for cellular uptake of
hydrophobic molecules preloaded into the core of poly-
meric micelles. It was shown that hydrophobic mo-
lecules could be efficiently transferred to lipid bilayers
(cell membrane) within minutes, where the lipid bi-
layers served as a sink to accommodate these mole-
cules before internalization [7]. After 2 h incubation of
HeLa cells with polymer micelles containing Dil the
dye could be observed inside the cells [7].

In our research, in 3 h incubation, the DiO/Dil ratio
reaches its maxima, so we can conclude that the similar
pathway of the dyes internalization could be possible in
our case too. This assumption is also supported by the
following fact. After 20 h incubation, intensities of
green and red signals are very strong. So, both dyes are
located in cells, but we do not observe FRET signal
recovering that should be observed due to the dye-
to-dye distance shortening. That means that the dyes
could be located not only in cell membrane, but also
inside the cells.

Conclusions. The cellular uptake of hydrophobic
fluorescent probes, preloaded in PC liposomes, has be-
en studied in real time using fluorescence resonance
energy transfer from the donor probe DiO to the ac-
ceptor one Dil. It was revealed that after 3 hours incu-
bation of hepatocytes with FRET liposomes, the FRET
signal almost disappeared, whereas DiO fluorescence
became very intensive. I/({, + I,) and I /(. + I,,) ratios
were 0.37 and 0.62, respectively. The loss of FRET
signal could be used as a «signal system» to monitor the
cell-liposome fusion and delivery of any active com-
pounds to cells. A membrane-mediated pathway for
cellular uptake of DiO and Dil dyes preloaded into PC
liposomes is supposed. However, this assumption sho-
uld be verified that will be the subject of our further
research.
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Hanopo3mipHuii 1inocoMHUN KOHTEHHEp i3 «CUT'HAIBLHOIO

CUCTCMOIO» I CHpﬂMOBaHO’l’ JAOCTaBKU PpEYOBUH Y JKMB1 KIIITUHH

Pesrome

Mema. Bcmanosumu modcaugicms ocHawjeHHA Nin0COMHUX «KOH-
meiiHepiey, AKi BUKOPUCIMOBYIOMb Ol CHPAMOBAHOI 00CMABKU pe-
YOBGUH Y JICUGT KNTMUHU, «CUSHATLHOIO CUCIEMOI0» OJIAL BIOCMECeH-
Hs 63a€MOOIT 1inocom 3 kiimunamu y yaci. Memoou. Buxopucmano
memoou ayopecyenmnoi mikpockonii, gayopecyenmnoi cnex-
mpockonii i mikpocnekmpockonii. Pezynemamu. 13 3acmocysan-
HAM epexmy 6e36UnPOMIHIO8ANILHO2O NepeHeceH s enepeii enexm-
poHHOo20 30y0xcenns (BIIE) 6i0 30nda-donopa DiO do 30HO0a-ak-
yenmopa Dil, inkopnopoganux y ainioui 6iwapu @ochamudun-
xoniny (PC) ninocom, euguerno npoyec 6x00xceHHs 2i0opodoOHux
@ryopecyenmuux 301018 y Knimuny. Busnayeno, wo nicis 3 200 in-
Kybayii kiimux eenamoyumis 3 Ainocomamu, y AKux cnocmepiea-
emuvcs BIIE mise napoio 30n0is, cuenan BIIE npakmuuno 3nukae, y
moil uac ax ¢ayopecyenyis oonopa DiO cmae Oyoice inmencugHoio.
Bucnosku. Epexm smpamu cuenany BIIE moocna eukopucmogysa-
MU AK «CUSHATLHY CUCEMY» Olisi MOHIMOPUHSY 83A€EMOOII N1inoco-
MU 3 KIIMUHOIO Ma 00CMAGKU AKMUGHOT PeUOBUNHU Y KITMUHY .

Kurouosi cnosa: ninocomu, ¢ayopecyenmui 30HOU, KIIMUHU,
6e36UNPOMIHIOBAIbHE NePeHeCeHH sl eHepail.

C. JI. Egpumosa, A. C. Jlebeos, I'. A. I'yparvuyk, A. B. Copokun,
U. I0. Kypunvuenxo, H. C. Kasok, FO. B. Manoxun

Hanopa3MepHbIii TUTOCOMHBII KOHTEHHED C «CUTHAJIBHOU

CHCTEMOM» JJIsL HaHpaBHeHHOﬁ JOCTAaBKH BCHICCTB B )KUBBIC KIICTKH

Pesrome

Llenv. Ycmanosums 803M0dCHOCHIL  CHAOJICEHUS  TUNOCOMHBIX
«KOHMelHeposy, UCNONb3YeMbIX O HANPAGIEHHOU 0OCMABKU Ge-
wecma 6 Jcusvle KIemKu, « CUSHALbHOU CUCEMOU» OJis OMCAedNCU-
BAHUA 83AUMOOCUCMBUSL TUNOCOM C KlemKamu 60 epemenu. Memo-
0bl. B pabome ucnonb308anvl Memoowvl Gayopecyenmuo Mukpo-
cKonuu, Qayopecyenmuol CneKmpoCcKonuu U MuKpoCnekmpocko-
nuu. Pezynomamut. C npumenenuem 0e3vi31y4amenbHo2o nepeHoca
IHepauu INeKmMPoHH020 6030yaucoenus (BI1D) om 30n0a-donopa
DiO k 30n0y-axyenmopy Dil, unkopnopupoeanuwix 8 iunuonsie ou-
crou gpocghamuounxonuna (PC) nunocom, uszyuen npoyecc 6xooicoe-
Hus 2u0pododnbLx ayopecyenmuvix 301006 6 kiemxy. Obnapyaice-
HO, umo nocie 3 u uHKyOayuu Kiemox 2enamoyumos ¢ Aunocoma-
Mu, 6 komopuix Habawdaemes BIIO meancdy napoii 30n008, cuenain
BIID npakmuuecku ucuezaem, 6 mo epems Kax ¢ayopecyenyus 00-
Hopa DiO cmanosumcs ouenv unmeHncusHot. Bvreoowvt. Dghexm
nomepu cuenana BIID moocno ucnonvzoeamv 6 xawecmee «cue-
HANbHOU cucmembly 01 MOHUMOPUHSA 83AUMOOEUCMBUS TUNOCO-
MblL ¢ KIeMKOU U 00CMABKU AKMUBHO20 BeWecn8d 8 KIEenK).

Kniouegvie cnosa: nunocomul, ghuyopecyenmuuie 30H0bI, Kien-
KU, 6e3bl31y4amenbHblil Nepenoc IHePIUl.
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Puc. 6. Ctpykrypa Hykineocomsl (PDB-nngekc 1K XS5, caiitel B3aumoneiicteust THK u ructoHoB 0003HaueHb udpamu) (a) U CaiT CBA3BI-
anus JIHK (caiiT 5,5, BbIneneHbl MOJIEKYJIbl BOJbI, 3aHUMAIOIINE MOCTHKOBBIE MOJOXKEHHUS MEKAY NTOHOPHO-aKLENTOPHBIMH IPyNIaMu
THCTOHOBOTO AuMepa u caxapodocharasim octoBom JJTHK) (6)
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Fig. 4. Fluorescence images (original magnification x100) of rat hepatocytes incubated with FRET liposomes during different time periods:
a—-0min; b—1h;c—2h;d-3h; e—20h (excitation with BP 460-490 filter); f— 20 h (excitation with BP 510-550 filter)





