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Revealing molecular mechanisms of sequence-specific recognition of DNA by proteins is one of the key
tasks of biology. The current review presents the results of statistical analysis of the structural databases
obtained by different scientific groups studying the conformational features of free and protein-bound DNA
fragments that could be used for clarifying the mechanisms of protein-nucleic acid recognition. The
analysis of the published data allowed us to make the following generalizations. The ability of DNA double
helix to adopt alternative conformations, including the ones of sugar- phosphate backbone, is an intrinsic
characteristic of certain DNA sequences. Such conformational transitions are the potential sources of
formation of unique geometry of the dinucleotide steps and/or individual nucleotides and lead to alteration
of base sta- cking and/or changes of the assessable surface area of atoms, and can be the criteria of
recognition of DNA by protein as well. Chan- ges in the physical properties that depend on the DNA
structure, i. e. the polar/unpolar profile and electrostatic potential of the grooves, can also be used by
protein for DNA readout.

Keywords: protein-nucleic acid recognition, variability of DNA structure, sugar-phosphate DNA
backbone, alternative confor- mations.

Introduction. Uncovering the molecular mechanisms
of sequence-specific recognition of DNA by proteins is
one of the important biological tasks. It is necessary to
understand the mechanisms of regulation of biological
processes underlying storage, readout and transfer of
genetic information as well as to control these
processes [1-3]. The data on atomic structure of DNA
fragments, proteins and their complexes obtained by
X-ray structure analysis are widely used to study the
principles of protein-nucleic acid recognition [4-6].

© Institute of Molecular Biology and Genetics NAS of Ukraine, 2010

Rapid development of crystallographic analysis of
DNA structure started in 1979, when a detailed
structure of hexamer d(CGCGCG), was obtained [7].
The results were quite unexpected because the double
helix of the hexamer differed radically from either
canonic A- or B-forms of DNA, described earlier by the
diffraction analysis of DNA fibers. The structure of
d(CGCGCQ),oligomer was a zigzag left-handed helix,
named DNA Z-form. Simultaneously, the crystalline
oligomers with other nucleotide sequences
corresponding to A-DNA (octamer d(GGTATACC), )
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[8] and B-DNA (dodecamer d(CGCGAATTCGCG),)
[9, 10] were obtained.

Dodecamer d(CGCGAATTCGCQG),, the binding
site of EcoR 1 restrictase, thanks to its mixed nucleotide
content, appeared to be a convenient object to explore
the dependence of DNA helix parameters on nucleotide
consequence. During the following decade, 22 variants
of d(CGCGAATTCGCQG), fragment obtained under
different conditions of crystallization were examined
in various laboratories [11]. The results showed that
both the width of the minor groove and the bend of
DNA helix axis were sequence-specific.

Significant narrowing of the minor groove (up to
3.5 E) appeared to be characteristic for AT-sites [12]
and not inherent in GC-fragments of DNA. As a result
of mall width of the minor groove, an ordered structure
of hydrated water is formed on the AATT-fragments
[13], so called hydration “spine”, which in its turn
contributes to the abnormally narrow minor groove in
these  regions. The conclusion about a
sequence-specific character of deformation of the DNA
double helix axis was made after revealing its
pronounced bent (10°-20°) in the places of GC/AT
junctions [10].

Dickerson and some other authors [10-13]
suggested that on the basis of a thorough analysis of
local helical parameters of various nucleotide
sequences along with the data on the contacts between
bases and amino acid residues in protein-nucleic acid
complexes it would be possible to determine the
principles of dependence of a double helix structure on
a nucleotide sequence and to formulate the general
rules for recognition of certain DNA sequences by
proteins. However, up to date these rules have not been
established because of high DNA conformational
mobility and non-predictability of amino acid-base
interactions in binding sites.

In the present decade, the mechanisms of
protein-nucleic acid recognition have been studied
using the statistical analysis of the data obtained by
the X-ray structure analysis of DNA crystals, proteins
and their complexes [14-16], which are available
thanks to creation of online structural databases
(PDB, NDB, Swiss Prot, etc.) [17, 18]. Besides, in
silico experiments by the methods of numerical
simulation (see [19-24] for details) allowed assessing
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changes of various physicochemical parameters of
protein and nucleic acid after their complexes
formation. They are: the changes in surface area,
accessible for the solvent [16], varying in
conformational parameters and DNA packing under
interaction with proteins [2-4], the deformation of
relief of protein and DNA surfaces at the complex
formation [25]. As a result of application of this
complex approach two basic mechanisms of
protein-nucleic acid recognition were identified:

1. Direct, or specific, readout implies that proteins
interact with DNA sequences forming direct contacts
(H-bonds) between amino acid residues and unique
atomic groups of bases, ( the substituents of
pyrimidines in C4 position and purines in C6 and N6
positions), situated in the major groove [1, 6].

2. Indirect readout implicates that a protein binds
non-specifically to the base and sugar-phosphate DNA
backbone moieties. Recognition is determined by
conformational features of a certain DNA fragment or
its deformational ability [1, 6, 17, 26-28]. In these
cases, the criteria of recognition can be: alterations in
local geometry of base pairs or sugar-phosphate
backbone; bends or kinks of DNA fragments;
peculiarities of both major and minor grooves relief;
ordered hydrated shell. Such features can pre-exist in
the certain DNA fragment or appear as a result of
binding with ligands (other proteins, ions, biologically
active small molecules) and dehydration of the binding
site, preceding the interaction.

As aresult of combined analysis of structural data
and physicochemical properties of the complexes, the
main types of contacts between proteins and DNA were
determined: electrostatic, Van der Waals forces and
hydrophobic interactions [29-32]; formation of
H-bonds [15, 33], including C-H...O bonds [34];
cation-m-system interactions [35]; interaction mediated
by molecules of bound water [19, 36].

The main conclusions made on the basis of these
investigations are the following:

1. DNA-protein complexation generally occurs via
both direct and indirect mechanisms.

2. Contribution of these mechanisms to the
realization of the protein-nucleic acid interaction varies
depending on the protein family, DNA sequence in the
binding site and other factors.
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3. The relative contribution is determined by the
specific protein type and the DNA fragment structure.
Thus, it is difficult to formulate the general rules of
protein-nucleic acid recognition [37].

In the present review, we focus our attention on the
results of statistical analysis of structural databases
obtained by various research groups, studying the
conformation features of both naked DNA and
DNA-proteins complexes. Systematization of such
information will allow us to formulate more accurately
the problems, appearing at description of protein-DNA
interaction mechanisms, including more diverse
mechanism of indirect recognition.

Variability of the DNA double helix. DNA4
variability and the problem of protein-nucleic acid
recognition. DNA polymorphism and structural
changeability at the formation of complexes with
protein are considered to be an important biological
problem. To solve this problem we need: (1) to
estimate a conformation mobility of DNA structure,
and (2) to compare it with the data on DNA double
helix rearrangement induced by interactions with
proteins. Up to date, the DNA double helix is known
to retain its own structure when the complexation
with various biologically significant molecules
occurs. Furthermore, a considerable variability
revealed for short DNA fragments, produces various
conformation states characterized by high sequence
specifity. It is still unclear whether the structural
flexibility of DNA is a capacity attributed to certain
sequences or it is stimulated by the interactions with
proteins.

The capability to change the double helix structure
of DNA is especially important for proteins for reliable
recognition of certain DNA sites during the
protein-nucleic acid complex formation [38]. In
general, protein binding leads to alterations in the bases
alignment and sugar-phosphate backbone structure.
Such local conformational DNA rearrangement can
result in bends or kinks, like in the sequence-specific
CAP-DNA complex [39] or at the nucleosome
formation when DNA is winding around the histones
[40]. It is obvious that sequence-specific deviations of
DNA structure from canonic B-form are more likely a
rule than an exception and play a crucial role in the
process of protein-nucleic acid recognition [24].

The fundamentals for sequence specific
protein-nucleic acid recognition, analogous to the
principles of complementary governing the formation
of DNA double helix , have not yet been formulated
[41]. Therefore, thorough investigation of the
mechanisms of DNA conformational variability at the
formation of complexes with proteins is an actual
scientific challenge. However, the idea of a
“recognition code” between amino acids and
nucleotides has not been confirmed so far [42].
Impossibility to establish such a code is explained, in
particular, by the existing of the vast number of degrees
of freedom in the protein-DNA contact sites during
formation of their complexes [29].

Forms of DNA double helix and their parameter.
As stated, protein-nucleic acid recognition is directly
associated with the ability of DNA molecule to change
its conformation. One of the most important biological
issues is how DNA conformational variability on the
local level (alignment of nucleotide pairs,
configuration of distinct double helix “steps” —
dinucleotides, sugar-phosphate backbone
conformation) influences both the global structure of
DNA molecule and its interaction with proteins [3].
Therefore, the criteria are required to establish whether
there are the conformational rearrangements in
question and, if yes, to identify their type.

The structural differences between A- and B-DNA
double helixes obtained by X-ray structure analysis of
the fibers, are characterized by a number of
conformational parameters [43-49], namely helix
parameters (an angle of helical twist between the two
neighboring residues — twist; a distance between
nucleotides along the helical axis — rise; a helical step —
axial rise; an angle of pair slope — tilf), displacement of
the base pairs relative to the helical axis
(x-displacement), width and depth of the grooves,
virtual interchain distances (d,,, dc,.,, (Table 1); a
phase angle of sugar pseudorotation P, and
sugar-phosphate backbone conformation.

The sugar-phosphate backbone conformation is
described by preferential configurations of the sugar
residues and torsion angles of the polynucleotide
chains. Analysis of the nucleotide structure showed
that sugar residues accept one of the two most probable
conformations: C3’-endo with 0° <P <36° (B-DNA) or
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gfrlitlcetljralparameters of A- and B-DNA for the fibers and crystal DNA structures ( X-ray structure analysis).
A-DNA B-DNA
Parameter Fibers Crystal Fibers Crystal
Helical parameters
angle of helical twist (degree) 32,7+ 1,2 32,5 36,0 36,5
displacement of base pairs along the axis (axial rise, z, /O%) 2,55 2,8 3.4 33
height per coil (rise f&) (helical step) 28,8 - 35,6 £4,4 -
displacement from helical axis (x, /O%) 4,4 +49 4,2 -0,14 -0,2
angle of pair slope (tilt, degree) 20,0 - -5,9 -
Groove size, /O%
major groove 8,0+£2,7" 12,9+ 2,6 17,2+ 0,1° 17,4
minor groove (width) 16,7+ 0,1° 15,8+ 0,5 12,1+ 0,4° 10,8
major groove 13,0 +0,5° — 8,5" -
minor groove (depth) 2,6 +0,2° - 7,5° -
Alignment of base pairs
twist (degree) 30,3 31,1 36,0 36,0
roll, (degree) 12,4 8,0 0,6 1,7
slide, (A) 1,4 1,53 0,45 0,23
tilt (base-pair tilt, degree) 22,6 14,6 2,8 2,1
Virtual interchain distances, R
dyy 5,5 6,0 6,6 6,7
deyer 5.4 5,5 4,9 4,9
Phosphate position, /o%
X, -0,9 -1,7 -3,0 -3,0
v, 8,4 8,5 8,9 8,9
z 2.5 2.2 0,6 0,4

“[517; "[45]; °[43]; ‘[48].

C2’-endo with 144° <P < 190° (A-DNA) [43]. Sugar
switching from C3’- to C2’-endo-conformation is
accompanied by alteration of nucleotide position
relative to desoxyribose (Fig. 1). As a result,
availability of hydrophobic atoms for the formation of
contacts with proteins is different in A- and B-DNA [52].

It has been shown by the X-ray structural analysis
of DNA fibers that sugar conformation [53, 54], helical
parameters rise and twist [43], width and depth of the
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grooves [55] are the important criteria for referring the
DNA structure to either A- or B-type of double helix.
Obviously, the values of those parameters are
interrelated.

Different  conformations of  desoxyribose
determine the variations in distances between
phosphorus atoms of neighbouring phosphate residues
in the same polynucleotide chain of A- and B-DNA
double helixes (Table 1, d, ). Consequently, the A- and
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Fig. 1. Switching of desoxyribose from C3’- to C2’-endo-
conformation

B-DNA helixes are twisted in a different manner that
corresponds to various angles of helical twist. The tilt
value also significantly differs for A- and B-types and,
thus, correlates with the sugar conformation (C3’-endo
in B-DNA and C2’-endo or equivalent C3’-exo0 in
A-form) [43].

In addition, A- and B-DNAs differ by the values of
displacement of base pairs relative to the helical axis
(x-displacement). In B-DNA the helical axis goes
through the nucleotide pairs (displacement ~0.2 E). Due
to a larger value of displacement of base pairs from the
helical axis (- 4.4 14 - 4.9 E) in A-DNA, polynucleotide
chains wind around the axis and form a hollow cylinder
inside. Nucleotide pairs are situated on the helix
periphery thus leading to the formation of a very deep
and narrow major groove together with shallow and
wide minor groove. In B-DNA, the grooves are less
marked, their depths are approximately identical,
however, they differ in width, the major groove being
wider than the minor one (Table 1).

More subtle features of A- and B-DNA double
helixes have been determined by the high resolution
X-ray structure analysis [56]. On the level of discrete
dinucleotide “steps”, the DNA structure has appeared
to be irregular, sufficiently depending on the
nucleotide sequence, having on each “step” the
characteristics different from the mean values for
canonical A- and B-forms.

Roll (p)

Rise (Dz)

Twist ()

Fig. 2. Local dimer step parameters [58]

The primary data on crystal structures of A- and
B-DNA revealed significant differences in three of six
local dimer step parameters — twist, roll, slide (Fig. 2)[57].

The most prominent distinctions of s/ide and roll
parameters were revealed by statistical analysis of
crystal structures of A- and B-DNAs. A-DNA’s slide is
equal to — 1.57 (= 0.38) A, roll to-179 (£ 5.6)%
whereas B-DNA’s slide is equal to — 0.21 (+ 0.074) A
and roll to] — 0.2 (£ 5.7)° [59], i.e. the B—>A transition
is accompanied by base pairs untwisting, ro// increase
and slide decrease (Fig. 3).

An additional discriminatory factor to identify the
dinucleotide type may be a mean distance between
phosphorus atoms of neighbour nucleotides along z
axis Zp (Table 1): for A-DNA Zp > 1.5 A , for B-DNA
Zp<0.5 A [50, 60]. Furthermore, a Zp value correlates
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Fig. 3. Two-stage transition of B-DNA into A-form under the
changes of helical parameters (slide and roll): @ — idealized B-DNA;
b — transition into intermediate form as a result of mutual shifting of

base pairs on 1.5 X (slide alteration); ¢ — alternative intermediate
form obtained by base pair rotation by 12° (roll alteration); d —
A-type obtained by simultancous alteration of slide and roll (base
pairs displacement and rotation) [56]

with a value of y angle and the coefficient of
correlation is approximately equal to — 1.0.

Additionally, “A-phylic” (or “A-like”) dimer steps
(GG-CC, GT-AC), including those which are found in
B-DNA, can have helical parameters specific for
A-DNA, i.e. negative slide, positive Zp, large value of
roll and lower — of twist. “A-phobic” (or “B-like”)
dimer steps (AA-TT and GA-TC) have the same values
of these parameters as those in B-form [3].

Stacking in A- and B-DNA is also different. In the
double helix of B-type, stacking is generally limited
to interactions between bases of the same
polynucleotide chain (intrachain stacking). In A-helix
bases from different chains participate in stacking as
well, i.e. there are both inter- and intrachain types of
stacking. This is determined by two reasons [43]. On
the one hand, the angle between neighbouring
nucleotides (twist) in A-DNA helix is smaller (30° —
32,7°) than in B-type helix (36° — 45°) that facilitates
the formation of both stacking types. On the other
hand, the angle of pair tilt, that is positive in A-type
helix and negative in B-type, causes an increase in
pair overlapping in the first case and a decrease - in the
second.

DNA in complex with proteins is known to contain
more A-“like” nucleotides, arranged as small clusters
in one of DNA chains in the sites of contacts between
DNA and proteins. It remains obscure whether such
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B—A transition is induced by interaction with protein
or occurs independently playing a role of recognition
factor for a protein [52].

Local variations of sugar-phosphate backbone also
can be the “signals” at realization of indirect
mechanism of protein-nucleic acid recognition and
participate in structural “matching” of DNA binding
site [62, 63].

It is known that conformation of sugar-phosphate
backbone of double helix in direction of P —
05’—>C5’—>C4’ is described by torsion angles a., [, v,
d, g, and , five endocyclic torsion angles of sugar v, +
v, and angle y, which determines the arrangement of
base in relation to the sugar ring (Fig. 4).

The torsion angle values varying in the range of
180° + 60° (120° + 240°) are usually denoted as trans
(t)-conformation, and those in the ranges of 60° = 60°
(0° = 120°) and 300° + 60° (240° + 360°) - as gauche”
(g")- and gauche (g)-conformations correspondently.

Mean values of all torsion angles were determined
for A- and B-DNAs (Table 2). Comparison of the
results of numerous studies shows that any angle alone
can not be considered as criterion of A- or B-form.

Based on the analysis of significant deviations of
the torsion angle values observed in dimer steps of
dodecamer d(CGCGAATTCGCG), [10], it was
assumed that the prime cause of high conformational
flexibility of B-DNA can be the rotations around
03’P-05°C5’ (angle o) and C3°03’ — POS5’ (angle €) .
However, it was found that angle £ significantly differs
for dinucleotides steps (311° + 170°) while angle o
changes within the range of g conformation (319° +
280°) (Table 2) [64].

Various authors proposed the combinations of two
angles, hypothetically specific for one of the double
helix forms. Significant correlations were found for
pairsy—9, -, 0-C, e, ePand C in B-DNA structure
(  X-ray structural analysis of dodecamer
d(CGCGAATTCGCQG), [64], and for pairs ¥, <,
x—ao, e-a, &, &y, a— and a—y in A-DNA structure
(X-ray structure analysis of tetramer d(CCGQG), [53].

The values of y and & were found to correlate with
sugar conformation and thus could be recommended as
a criterion of A- or B-DNA [65]. This was confirmed
by the analysis of numerous crystal structures and the
results of molecular dynamics simulation [66, 67].
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Table 2.
Values of torsion angles for A- and B-DNAs

Angle, degree

DNA form

a p ¥ 3 € C x
A-DNA* 308 £2 175+ 3 42 £ 1 79 £ 1 212+ 2 305+£2 203+ 1
A-DNA® 293 + 17 174 £ 14 56+ 14 81 +7 203 + 12 289 £ 12 199 £ 8
B-DNA® 314 213 36 157 155 264 262
B-DNA‘ 299 £ 8 180 + 14 57+8 122 £ 21 177 £ 25 269 + 34 241 + 14
B-DNA® 298 £ 15 176 £ 9 48 £ 11 128 £ 13 184 £11 265 £ 10 241+ 8

[45]; ¢ [44] — data for DNA fibers; > [64, 65]; ° [10, 56] — data for DNA crystals.
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Fig. 4. Atom numbering system and torsion angle determination
[43]

Subtypes of B- and A-DNA forms. The results
presented in the Table 2 show a slight difference
between the values of angles 3 and y of sugar-phosphate
backbone in A- and B-DNA, which remain within t- and

g'-conformations respectively. Anglef is more variable
(POS5" - C5°C4), and its value correlates with values of
angles ¢ and C along the chain. Angle d associated with
the sugar conformation, is the most variable, whereas the
pair of angles € and C changes within the frame of two
discrete states: (t, g) or (g, t). Due to the presence of two
conformations in the pair € and { angles the concept of
existing of two B-DNA subtypes, i.e. Bl (:{=¢, g) and
BII (e: £ =g, f) was introduced.

Subtype BI corresponds to the classical B-form of
DNA [68] and is characterized by sugar packing
C2’-endo with angle 6 = 135°, g conformations of
torsion angles  and o + 1 (the value of £ #260° is lower
than in A-DNA) as well as by the values ofy typical for
B-DNA (x260°) (Table 3).

The conformations of BI and BII are different by
the position of phosphate groups relative to the grooves
of DNA double helix. In BI subtype, a phosphate is
situated almost symmetrically to both grooves, while in
subtype BII it is turned towards the minor groove (Fig.
5,a, b).

Transition between the conformations of BI and
BII takes place due to simultaneous change of two
torsion angles € and C. Therefore, the subtypes of
B-DNA can be described by the value of difference € —
€ :~-90° for BI and =+ 90° for BII [67]. In BII-DNA
torsion anglesy, oo + 1 and 3 +1 are altered as well,
however these changes usually compensate each other.

Equilibrium BI - BII is sensitive to nucleotide
composition and sequence [70, 71]. Conformation Bl is
more often observed in pyrimidine (R)-pyrimidine (R)
and purine (Y)-purine (Y) steps and more seldom in
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Table 3
Mean values of torsion angles for the subtypes of A-and B-DNAs
[38]

Angle, degree
DNA € £

subtype
p

Y 5 € ¢ x

BI 299 179 48 133 187 263 250

BII 293 143 46 143 251 168 278
Al 295 173 54 82

206 285 200

All 146 192 183 85 197 289 203

combined steps YR and RY. On the other hand, the
combined steps are preferable for conformation BII, in
particular, for the step YR (Table 4).

Two or more BII conformers rarely follow one
another, because BII conformation is accompanied by a
local and global distortion of DNA structure, e.g.
tetranucleotide, which possesses all four phosphate
groups of the BII type, has a bend similar to that
observed in complexes with proteins [71]. That is, steps
BII-BII require stabilization by external forces, such as
crystal packing or interaction with proteins.

The phosphate group conformation, corresponding
to BII subtype, affects the helical parameters of bases
[71]: the roll values are only negative, twist has high
values.

Mean x-displacement values are sensitive to the
number of BII dinucleotide steps n the fragment with
classic B-form structure. At BII steps ~ 20%
x-displacement is positive, i.e. the bases are shifted
towards the major groove, whereas for the B -form the
mean value of x-displacement is equal to -1.5 A (see
Table 1). The grooves of BII-DNA and BI-DNA only
slightly differ by their width with the apparent
tendency of opening major groove [68].

A-DNA also has two subtypes: Al, the classic
A-form, and AIl. For the first time an alternative
conformation AIl was observed for the central
dinucleotide step C-G in the crystal structure of the
duplex d(CCCCGGGQ), [72]. The conformations of
the angles o, B and y of the sugar-phosphate backbone
of this step correspond to #-conformation, local twist is
much smaller (25°) as compared to its value for the
A-form (33.5°).
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Mean values of all torsion angles for subtypes Al
and AIl are presented in Table 3. For different DNA
fragments with the A-form double helix, relatively
small spread of values is recorded only for three of
seven sugar-phosphate backbone torsion angles - o, y
and to a lesser extent, . Therefore, the criteria for Al
and All subtypes are the values of torsion angles o
(O3'P-05°CS5’) and y (O5°C5'-C4°C3"). Thus, two
conformations of A-DNA differ in the orientation of
sugars relative to the bonds P-O5°-C5'-C4" [38].

Subtype Al is characterized by g /g -conformation
of torsion angles a./y, while for All the values of o and y
angles are within the #-region. This determines nearly
planar arrangement of atoms O3'-P-O5°-C4'-C3" of
the 3’-terminal nucleotides, easily accepted by purines
and worse - by pyrimidines. Such values of o and y
angles can be formed from classic A-form with a/y =
300°/60° by crankshaft-like rotation around the
respective bonds, which effectively compensates
switching of the torsion angles so that the general
direction of backbone remains practically unchanged
[73, 74]. That is, the Al — AIl transition is
accompanied by a correlated change in torsion angles
in the direction of P - 05" — C5* — C4" thatleadsto a
relative reorientation of desoxyriboses with the bases
remaining almost unchanged (Fig. 5, ¢, d) [61].

Equilibrium Al - AII as well as BI - BII depends on
the nucleotide composition and base sequence, i.e. All
subtype is more common for YR-steps and less
frequent for steps RY and YY (Table 4) [38].

Nonclassical conformations of DNA
sugar-phosphate backbone in the sites of protein
binding. According to the data of numerous up to date
studies on DNA fragment and protein-nucleic acid
complex crystallography, the number of nucleotides
with nonclassical conformations of sugar-phosphate
backbone is essentially higher in the DNA —protein
complexes than in the naked DNA. For example, the
frequency of alter native conformations of the torsion
angle vy in DNA interacting with proteins is increased
approximately by 5 times as compared to naked
B-DNA [75, 76].

Moreover, A- and B-forms as well as BI- and
Bll-conformations in naked DNA and DNA
complexed with proteins differ not only in
conformation of sugar-phosphate backbone but also in
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Fig. 5. Diagram of two main

conformations of B-DNA: a — subtypes
Bl and Bl differ in orientation relative to
the C3°03°-O5'P-bond determined by
torsion angles € and {[61]; b — in BI
conformation (dotted line) angles g C

Table 4
Frequency of occurrence of Bl, Bll, and AIl conformations (%)
for the steps RR, RY, YR, and YY for the pure DNA [38].

s]u)g\tl}i)e RR RY YR YY
BI 32,94 16,17 20,29 30,59
BII 20,11 2544 54,43 0
Al 17,14 30,71 29,64 22,5
Al 32,72 1.8 63,63 1.8

the values of helical parameters roll, twist and tilt
(Table 5).

Further we present several typical examples of
DNA-protein complexes where nucleotides with
nonclassical conformations of sugar-phosphate
backbone can be used for DNA readout by proteins.

Transition of the central dinucleotide step C-G of
duplex d(CCCCGGGG), to an  alternative
conformation AIl can be used as a signal for
recognition by the protein of its “own” binding site, for
example, by restrictase MSPI, which precisely cleaves
the fragment CCGG independently on the nucleotide
composition of neighbouring sequences [72].

Protein BPV-1 E2 recognizes DNA sequence
(hexamer d(GACGTC),) by the bent toward the minor
groove and by the BII conformation of the central C-G
step [77]. It was found [76] for the complex of insect
heterodimer nuclear receptor consisting of ecdysone
receptor (EcR) and ultraspiracle (USP) (PDB index
1R0O [78]) having palindrome duplex
d(5°-AGGTCAATGACCT-3") as a binding site, that

have (7, g)-conformations; in BII
subtype angles g ( have (g,
f)-conformations respectively [64]; ¢ —
superposition of A-DNA subtypes
corresponding to correlated bond

restructuring in sugar-phosphate
backbone: subtypes Al and Al differ in
orientation relative to the

POS5'-C5'C4'-bond determined by the
angles o, 3, and y (d) [61].

adenine at the starting point of binding site had an
A-like desoxyribose packing and #-conformation of
torsion angle y (Fig. 6). For most of the similar
complexes (the mammal steroid and non-steroid
hormone receptors are bound to DNA just according to
this principle), adenine at the start point has B-like
desoxyribose packing and g'-conformation of angle y
typical for the classic DNA B-type [79]. Probably,
adenine with alternative conformation can serve as a
signal for the proteins involved in formation of this
highly specific complex to recognize their binding
sites.

Nonclassical conformations of the sugar-phosphate
backbone are very common for the nucleosome
structure (in particular, nucleosome 1KX5 [36]), where
regular interchange of BI- and Bll-conformations are
observed. In the sites of direct protein-nucleic acid
interactions these conformations are transformed to
more deformed B-conformers characterized by
switching of torsion angleso + 1 and y + 1 (“switched”
BI-DNA) and by thepresence of nucleotides with a
wide dispersion of the values of  and o + 1. In this
case, it can be supposed that nucleotides with
alternative  conformations of  sugar-phosphate
backbone in nucleosome are essential not only for
ensuring optimal conditions for interactions with
histones but also for a possibility of other proteins to
recognize indirectly their “own” sites on the
nucleosome DNA.

Summarizing, the following conclusion could be
made. The ability of DNA double helix, including
sugar-phosphate backbone, to acquire alternative
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Table 5
Mean values of helical parameters A- and B-DNAs [69] and
dinucleotide steps with BI- and/or Bll-conformations [71]

DNA type Twist, degree | Rise, A | Roll, degree | Tilt, degree
A-DNA 31,8 2,9 1,2 -0,2
Pure B-DNA 34,9 3,4 2,8 0,6
Protein-bound B-DNA 32,1 3.4 - -
Pure B-DNA

BI/BI 343 3.3 3,9 1,1

BI/BII 37,8 3.4 -39 0,4

BII/BII 46,8 3.4 7,7 -1,9
Protein-bound B-DNA

BI/BI 31,4 3.4 4,9 0,6

BI/BII 37,2 3,4 -2 0,7

BII/BII 44 3,5 -8,7 0,8

conformations, can be considered as an “intrinsic”
property of certain DNA sequences. Such
conformational changes can result in the peculiarities
of unique geometry of various dimer steps and/or
individual nucleotides, thus leading to disturbances of
the base stacking and/or alteration of the accessible
surface area of atoms and therefore can be the criteria

of  protein-DNA  recognition. = Conformational
transitions induce changes in some
structure-dependent ~ physical ~ properties, i.e.

polar/non-polar profile and electrostatic potential of
both minor and major grooves, which can also be used
by proteins for specific DNA readout [15, 75]. The
latter appeared to be important for the Hox-group
proteins functioning [80]. However, further studies are
required for understanding general principles of the
indirect DNA readout by proteins.

E. II. bopuckuna, M. IO. Txauenxo, A. B. lllecmonanoga
MMonmumopdusm ITHK u 6enkoBo-HYKIEHHOBOE Y3HABaHUE

Pesrome

Pacuughposra monexynapnvix mexanuzmos ysHaganusi Geaxamu
KoHnkpemHuliXx nociedosamenvrhocmeii JJHK — oona us ocnoenwix 3a-
oday cospemennol buonoeuu. Hacmosawuii 0630p noceaujen pesyib-
mamam CMamucmuiecko20 anaiu3a cmpyKmypHulx 0a3 OaHHbIX,

369

Fig. 6. A-like packing of desoxyribose and 7-conformation of angle
y in adenine at the starting point of protein binding site in a complex
of heterodimer receptor with duplex d(5'-AGGTCAATGACCT-3")
(PBD index 1R00) [78]

NONYYEHHBIX PA3IUYHBIMU UCCTeO068AMENAMU NPU U3YUEeHUU KOH-
dopmayuonnvix ocobennocmeil ppacmenmos ceoboonou JHK u
HHK 6 komnaekcax ¢ beakamu, Komopbvie Mo2ym Obimb NO1E3HLIMU
npu GbIACHEHUU MEXAHUBMOB 0elK060-HYKIeUHOBO20 V3HABAHUS.
Ananuz numepamypHsix OAGHHBIX NO360UT cOelamb cledyruue 00-
obwenus. Cnocobnocms dsounou cnupanu JJTHK npunumams anb-
mepnamugnvle KOHpopmayuu, 6 mom uucie caxapogochammovim
0CMOBOM, ABNAEMCI «BHYMPEHHUMY CBOUCMEOM, NPUCYUUM Onpe-
Odenennvim nociedosamenvrocmam JJHK. Taxue xonpopmayuon-
Hble  Nepecmpouru  MO2ym  CAYICUMb  NOMEHYUATbHbIMU
UCMOYHUKAMU NPOABTIEHUS YHUKAILHBIX 0COOEHHOCmell 2eoMempuu
PA3IUYHBIX OUHYKICOMUOHBIX UA208 U/UNU OMOETbHBIX HYKICOmU-
006 U Hapywiams CMIKUHE OCHOBAHUU UW/UNU USMEHAMb NIOWAObL
00CMYNHOU NOGEPXHOCIU AMOMOB U OblMb Kpumepusimu OJisl y3Ha-
sanus yuacmra JJHK 6enxom. Usmenenus pusuueckux ceoicms, 3a-
sucsawux om cmpykmypor [JHK, maxux xax noasapHo-uenoaapublil
npo@uiab u dAeKmpocmamuieckuii NOMeHYuan HcerooKos, maxice
MO2Ym UCHONbL306AMbCA OenKamu 0N Y3HAGAHUS KOHKPEMHO20
cauma J[HK.

Kniouesvie cnosa: benkoso-nykieunogoe y3nagamue, noiumop-
¢usm JJHK, caxapogocpamusiii ocmos [HK, anemepramuensie
KoHpopmayuu.

O. I1. bopuckina, M. IO. Txauenxo, I'. B. lllecmonanosa
Ionimop¢izm JJHK i GinkoBo-HyKI€THOBE BIII3HABaHHS

Pesrome

Poswugpysanns Monrekyisipuux mMexanizmie ynizHagaunHs OLiKamu
KoHKkpemHux nociioosnocmetl JJHK — 00ua i3 ocHosHux 3a0au cy-
yacHoi 6ionoeii. O2nsa0 npucsiaueHo pe3yibmamam CmamucmudHo-
20 aHanizy cmpyKkmypuux 0az 0anux, OmpumManux pizHumMu 2pynamu
Q0CNIOHUKI6 NPU GUEUEHHI KOH(popmayiliHux ocobausocmeil gpaz-
menmie einvrnoi [JHK i JTHK y komnaexcax 3 6inkamu. Taxi 0ani eu-

KOpUCmMogyomo npu 0ocnionceHHi Mexanizmie
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6iIK0B0-HYKI€IH08020 8NI3HABAHHS. AHALI3 IimepamypHux djicepel
003801U8 3p0OUMU HACMYNHI Y3a2aibHeHHs. 30amHicmb N0OSIUHOT
cnipani JJHK nabysamu anrbmepnamuenux KoHgopmayii, y momy
yycni caxapogocamuum ocmosom, € «8HYm- PIUHbLOIY 61AC-
mugicmio, AKa NpUMamanua euznavenum nociioognocmam JJHK.
I100ibHi KOHpOpMayilini nepebyd08uU MOXNCYMb CAY2Y8AMU NO-
MenyiunuM 0dcepeiom NposA8y YHIKANbHUX 0Cobausocmell 2eo-
mempii piZHUX OUHYKIeOMUOHUX Qpazmenmis i/abo oxkpemux
HYKIeomuoie ma npuzeoo0umu 00 NOPYUeHHs CMeKiHey 0CHO8 i/a60
3MIH NA0W OOCMYNHOI NOGEPXHI amomie, a makodic Oymu Kpu-
mepiamu 6nizHaganHs OiiKamu cneyu@iuHux nociidogHocmel
JIHK. 3minu ¢isuunux enacmu- gocmeti, sKi 3aiedicams 8i0 CMmpyK-
mypu JIHK, cepeo axux noasapHo-HenoisapHuil npo@iie i enekmpoc-
mamuyHul nomenyian bopo3zenox, maxkodc — MOACYMb
BUKOPUCMOBYBAMUCA OinKaMU O GNI3HABANHA KOH- KPEmHo2o
cauma JTHK.

Kurouosi cnosa: 6inkogo-nykieinose 6niznagans, noaimop@izm
JIHK, caxapogochamnuii ocmoe /IHK, aremepramusni kongop-
Mmayii.
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