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Aim. There are several techniques for the identification of hierarchy of dynamic domains in proteins. The
goal of this work is to compare systematically two recently developed techniques, HCCP and HDWA,on a
set of proteins from diverse structural classes. Methods. HDWA and HCCP techniques are used. The HDWA
technique is designed to identify hierarchically organized dynamic domains in proteins using the Molecular
Dynamics (MD) trajectories, while HCCP utilizes the normal modes of simplified elastic network models.
Results. It is shown that the dynamic domains found by HDWA are consistent with the domains identified by
HCCP and other techniques. At the same time HDWA identifies flexible mobile loops of proteins correctly,
which is hard to achieve with other model-based domain identification techniques. Conclusion. HDWA is
shown to be a powerful method of analysis of MD trajectories, which can be used in various areas of protein
science.
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Introduction. The method of Hierarchical Clustering
of Correlation Patterns (HCCP) was developed for
identifying dynamic domains in proteins [1]. HCCP is
the only existing technique, which identifies the hierar-
chy of dynamic domains. Each dynamic domain can
be divided into smaller relatively independent subdo-
mains of next hierarchical level and so on. The HCCP
technique was successful in revealing the statistics of
dynamic domain in PDB [2], in finding the candidate
proteins for biosensor design [3] and in simulating
domain closure in the hinge-bending proteins [4]. Des-
pite these successful application the HCCP technique
possesses a serious limitation. It depends on the matri-
ces of residue-residue correlations of motion, which
should be computed by other techniques. It was shown
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that the Gaussian Network Model (GNM) [5-9] is an
optimal choice for constructing such matrices in the ca-
se when a single crystal structure of a protein is avai-
lable. However, the usage of GNM (or any other tech-
nique based on the normal modes calculations) restricts
the sampled protein motions to small-amplitude har-
monic displacements around some reference structure
[10, 11]. As a result only tiny part of the protein con-
formational space could be described. The dynamic do-
mains computed from the correlations of such restric-
ted motions may not correspond to the pattern of large-
amplitude inharmonic dynamics of real proteins. Cer-
tain techniques, such as DynDom [12] utilize the dif-
ferences between two alternative structures of a protein
or between several frames from the trajectories of Mo-
lecular Dynamics (MD) simulations, which allows to
take into account large conformational displacements.
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Table 1
The details of molecular dynamics simulations
PDB Number Number Length Length of equi- Number of
d of of water of trajec- librated part of frames used
code residue molecule tory, ns trajectory, ns in HDWA
1FS3 124 8788 18 8 26
ICLL 144 3716 20 5 16
2LAO 238 8592 20 10 27
1A06 578 23504 180 50 12

However these techniques do not reveal the hierarchi-
cal arrangement of dynamic domains.

Recently the Hierarchical Domain-Wise Align-
ment technique (HDWA) has been developed. It is con-
ceptually similar to the HCCP technique [1], but uses
different input data. HDWA exploits the hierarchical
character of protein motions recorded in MD trajec-
tories, while HCCP utilizes the patterns in the matrices
of residue-residue correlation of motions, which are
computed using GNM. HDWA identifies a hierarchy
of dynamic domains from MD trajectories or any other
sets of atomic coordinates and allows estimating stabi-
lity and interdependence of domains.

In the current work we compare systematically the
HDWA and HCCP techniques using the set of four test
proteins of different structural classes. A comparison
with the widely used DynDom technique is also per-
formed.

Theory and methods. Test proteins. Four proteins
were selected as a test set — human calmodulin (PDB
code 1CLL) [13], human serum albumin (PDB code
1A06) [14], lysine-, arginine-, ornithine-binding pro-
tein (LAOBP) (PDB code 2LAO) [15] and bovine pan-
creatic ribonuclease A (PDB code 1FS3) [16]. These
proteins belong to different structural classes and cover
awide range of sizes (from 124 residues in 1FS3 to 578
in 1A06).

Molecular dynamics simulations. All MD simula-
tions were performed using Gromacs 4.0 suit of pro-
grams [17]. All four test proteins were simulated under
NPT conditions at the temperature of 300 K and the
pressure of 1 bar maintained by the Berendsen ther-
mostat and the Berendsen barostat respectively [18].
GROMOS G43a2 force field for the proteins [19] and
the SPC model for water [12] were used. The bond

lengths in protein were constrained using the LINCS
algorithm [20]. The water molecules were constrained
using SETTLE [21]. The fourth-order PME algorithm
[22] with the cut-off of 1 nm was used for compu-
tations of electrostatic interactions. The time step of
2 fs was used in all cases except the human serum
albumin, which was simulated with the time step of 4 fs
after increasing the masses of hygrogen atoms to 4 a. u.
and decreasing the masses of the corresponding heavy
atoms [23]. The number of water molecules, the length
of the trajectories and the number of frames used in
HDWA for all studied proteins are summarized in Tab-
le 1. The frames used in HDWA were extracted from
the equilibrated parts of the trajectories at equal inter-
vals. The quality of equilibration was controlled by
monitoring backbone RMSD and the secondary struc-
ture content of the proteins.

Choice of the reference structure. If the molecular
system subjected to MD simulation is well-equili-
brated, it samples the ensemble of states, which are all
equally suitable as a reference structure for domain-
wise alignment. The choice of any single frame as a re-
ference means that HDW A will attempt to transform all
frames of the trajectory to this selected structure, which
will inevitably introduce a bias. Indeed, in this case the
motions of domains, which describe the transitions bet-
ween other trajectory frames, are not taken into acco-
unt. In order to avoid such bias the structure averaged
over whole trajectory is used as a reference. The com-
mon argument against the usage of average structures
is their «unphysical» nature. Indeed, the average struc-
ture may contain sterical clashes of atoms, unusually
long bonds, etc. This may constitute a significant prob-
lem in the methods, which rely on correctness of the
protein topology. However, HDWA does not suffer
from this problem because it uses only the geometrical
positions of atoms regardless of any «unphysical» con-
tacts or bonds.

Technical details. The HDWA algorithm was imp-
lemented in custom C++ program using Pteros mole-
cular modeling library (https://sourceforge.net/proje
cts/pteros/). VMD [24] is used for visualization.

Results and discussion. Top-level domains. The
boundaries of top-level domains identified by the
HDWA, HCCP and DynDom techniques were compa-
red. In the case of DynDom, which needs two struc-
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Table 2

Comparison of the domain boundaries obtained in HDWA, HCCP and DynDom techniques

HDWA

HCCP DynDom

Protein

Domain 1 Domain 2

Domain 1 Domain 2 Domain 1 Domain 2

Ribonuclease A Flexible loops

Calmodulin 1-69 70-144
Lysine-, arginine-, orni- 1 ¢q 197 53g 90-191
thine-binding protein
5-208, 209-229,
Human serum albumin 230-294, 295-464,
464-468 469-582

Body of the globule

Identified as a single domain protein No domains found

1-74 75-144 7-75  76-144
1-90, 3-90

192-238 1191 191236 01190
5-200, 201-226, 7-194,  195-282

227-293, 294-462, 283-284  285-580

463-469 470-582

tures to identify the domains, two alternative crystal
structures were used for each of the test proteins (1FS3
and 4RAT for ribonuclease A; 1CLL and 1CDL for
calmodulin; 2LAO and 1LST for LAOBP; 1AO6 and
2BXP for serum albumin). The results of comparison
are summarized in Table 2.

In the case of calmodulin the boundary between the
domains is correctly identified by all techniques to be
between the residues 69 and 75. The discrepancy is
easily explained by the fact that the long helix, which
connects two domains, is rather featureless in terms of
structure and dynamics.

LAOBP is a classical hinge-bending protein, which
exhibits large displacement of domains around well-
defined hinge. The domain boundary in LAOBP is very
well defined, thus it is not surprising that all techniques
find it correctly with the difference of 1-2 residues.

The human serum albumin is the most interesting
among the studied proteins in terms of its domain orga-
nization. This protein is quite large and exhibits comp-
lex multicomponent dynamics. It also contains many
flexible unstructured loops, which are important for its
functioning. All three techniques find two top-level
domains in serum albumin, however their boundaries
are significantly different. HCCP and HDWA produce
similar results with three continuous segments in each
domain. The boundaries of these segments are shifted
by up to 8 residues, but the overall arrangement is the
same. DynDom identifies only two segments in each
domain. It is necessary to note that the DynDom do-
main assignment for serum albumin is rather unrelia-
ble. It depends significantly on the choice of two alter-
native structures, which are used for domain identifi-

cation (data not shown). This may be explained by high
flexibility of serum albumin.

Subdomains. Both HDWA and HCCP technique
are able to identify the subdomains of several hierar-
chical levels. However, it is impossible to compare the-
se techniques on the level-by-level basis because of
different algorithms of domain identification. The par-
ticular subdomain identified by HDWA at, say, level 3
may appear in HCCP at level 7 or does not appear at all.
Thus the following procedure of comparison was used.
HDWA was run with 6 hierarchical levels for all the
proteins studied. Each subdomain found by HDWA on
each level was matched with all the subdomains iden-
tified by HCCP for the same protein at the levels from 1
to 50. Matching was performed in terms of the Ham-
ming distance between the binary vectors, which repre-
sent the domains. After this procedure, the mean mis-
matches for each HDWA hierarchical level were com-
puted (Table 3).

The mismatches for different hierarchical levels
differ substantially in different test proteins. In LAOBP
and calmodulin the mismatch of the first-level domains
is very small, while the domains of the levels 2—5 differ
significantly in HCCP and HDWA. The mismatch
decreases again for level 6. The same trend is observed
for serum albumin. The mismatch of the first-level
domains looks large (20 residues). However, this diffe-
rence actually is not so dramatic because of large size
of this protein and the fact that each of first-level
domains consists of three pieces in terms of the
sequence. The reason of this intriguing trend becomes
evident after visual inspection of the subdomains iden-
tified by HCCP and HDWA. Typically small regions
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Table 3
Mean mismatch (in residues) between HDWA domains of
different level and corresponding HCCP domains

HDWA hierarchy level

Protein

T

4
Ribonuclease A 33.0 14.7 13.0 10.5 8.2 6.0
Calmodulin 35 92 136 94 79 57
LAOBP 1.0 11.0 139 142 156 82
Humanserum o6 6 405 436 257 166 103

albumin

HDWA domains in LAOBP for hierarchical levels /-3. The
subdomains are colored black and white on each level. The parts of
the protein, which do not belong to the current domain, are shown
transparent. The domain indexes and the values of flexibility R are
shown

around the hinge residues are cut off the largest
domains on the second level of hierarchy in HCCP. The
bodies of domains start to fragment into several subdo-
mains on higher levels of hierarchy. These subdomains
correlate rarely with the flexible loops and other highly

mobile regions in the protein because of limitations of
the underlying elastic network model. In contrast,
HDWA subdivides the domains of the first level ac-
cording to the mobility of their structural elements in
the course of MD. Flexible fluctuating loops are as-
signed to one subdomain of the second level, while re-
latively rigid body of the domain is assigned to another
subdomain (Figure). The same is true for subsequent
levels of hierarchy until the subdomains become small
enough to cover a single element of the secondary
structure or individual loop. Such basic structural ele-
ments are identified by both HCCP and HDWA (al-
though on different hierarchical levels). Thus the mis-
match decreases for high levels of hierarchy.

The ribonuclease A is an exception among other
studied proteins because it does not contain pronoun-
ced domains of the first level. Thus the mismatch is the
largest for the first-level domains and decreases for
higher hierarchical levels. In HDWA case the globule
is subdivided into flexible loops and the rigid core at
the first level of hierarchy. In the case of HCCP the
mobility of loops is not detected and the domains of the
first level do not correlate with the domains identified
by HDWA.

The HDWA technique has some limitations. It is
slow in comparison to other techniques due to expensi-
ve exhaustive search performed computationally for
each domain subdivision. Typically, run time for the
test proteins used in this work is between 5 and 30 min
on fast office workstations for ~10-20 trajectory fra-
mes. This time increases rapidly with an increase in the
number of frames.

However, the MD simulations themselves are typi-
cally 3—4 order of magnitude slower, thus the perfor-
mance of HDWA is not critical. Another disadvantage
is the character of domain subdivision. Each domain is
subdivided into exactly two subdomains, which is not
always the case in reality. However, as it was explained
above, this is the only unbiased way of division (di-
vision into larger number of subdomains raises the
problem of «overfitting»). The post-processing of the
domain tree eliminates this problem partially by
ensuring that the flexibility of domains increases with
the increase of the hierarchical level. After the post-
processing some domains may possess more than two
subdomains.
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HDWA can also be viewed as a powerful method of
analysis of MD simulations, which extracts informa-
tion about the hierarchy of the protein dynamics from
the «mess of trajectories» for individual atoms. Our
technique can be used in concert with the essential
dynamics and other well established analysis techni-
ques when the information about the hierarchy of do-
main motions is required. Our method is expected to be
especially useful for large complex proteins. Such pro-
teins possess the dynamics, which is unlikely to be de-
scribed adequately at the single level of hierarchy.
HDWaA is the technique revealing the whole hierarchy
of motions present in MD trajectories for such proteins.

Conclusion. The HDWA and HCCP methods of
domain identification are tested on four proteins from
different structural classes. It is shown that the number
and the boundaries of large dynamic domains are con-
sistent in both techniques and correspond well to the
data of widely used DynDom technique. The hierarchy
of dynamic domains in HDWA accounts for the pre-
sence of flexible loops and rigid regions, which is hard
to achieve in other existing domain identification tech-
niques. The domains found by HDWA may be con-
sidered as the most realistic units of the protein dyna-
mics because they are identified using the data of ato-
mistic MD simulations.

C. O. €cunescvkuti

BusnaueHHs iepapXii JUHAMIYHUX AOMCHIB y OiJKax: MOPIBHSHHSA
meroniB HDWA ta HCCP

Pesrome

Mema. [chye Kinbka memo0ié 01 6U3HAUeHHs i€Epapxii OUHAMIYHUX
Odomenigy binkax. Mema 0anoi pobomu nonseana y npogedeHHi cuc-
MeMamuyHo20 ananizy 060X Hewo0d8HO CMBOPEHUX Memoodig —
HCCP ma HDWA — na ocnogi mecmogozo Habopy 0OINKi6 3 pi3HUX
cmpykmypHux knacie. Memoou. Buxopucmano memoou HDWA ma
HCCP. Ilepwuii po3pobaeno 0ns eusHavenns iepapxii 00MeHie 3 u-
KOPUCMAHHAM MPAEKMOPIll MOLEKYNAPHOL Ounamiku, mooi sk opy-
2Ull 2PYHMYEMbCS HA HOPMANbHUX KOJIUBAHHAX CHpOWeHoi ena-
cmuunoi modeii 6inka. Pezynemamu. Bcmanosneno, wjo Ounamiuni
domeHnu, 3nandeni memooom HDWA, dobpe y3200acytombcs 3 dome-
Hamu, usHavenumu memooom HCCP ma i3 3acmocysanuam iHuwux
nioxodie. ¥ moii sice uac HDWA npasuivno eusnavae pyxiugi nemii
6 OinKax, 4020 8axicKo docsaemu iHwum cnocobom. Bucnoexu. Ilo-
kazano, wo HDWA € nomysicHum memooom aumanizy mpaekmopii
MONEKYNAPHOL OUHAMIKYU 01151 6a2amoOOMeHHUX OiIKIG.

Kniouosi cnoea:ounamiuni 0omeHnu, ioeHmugpikayis O0oMenis,
HDWA, monexyasapua ounamika.

C. A. Ecunesckuii

OHpeZ[CHeHI/Ie nepapxuu JMHAMUYCCKUX JTOMECHOB B Oekax:

cpaBHeHue metooB HDWA u HCCP

Pesrome

Ilens. Cywecmgyem HeckoabKO Memo0o08 05 onpeoeneHus uepap-
XUU OUHAMUYECKUX 00MeH08 8 benkax. Llenv danHou pabomwl co-
CMOANA 8 CUCMEMAMUYECKOM aHaau3e 08yX HeOaeHO CO30AHHbIX
memo006 — HCCP u HDWA — na ocnoge mecmogozo Habopa 6enxos
U3 pasHuIX cMpPYKMypHoix Kiaccos. Memoowt. Hcnonv3zo8amnvl me-
moovt HDWA u HCCP. [lepguiii paspaboman 0Jist onpeoenenus ue-
papxuu OUHAMUYECKUX OOMEHO8 C UCHONb308AHUEM MPAEeKMOPUil
MONEKYAAPHOU OUHAMUKU, M020a KAK 8MOPOU OCHOBAH HA HOPMAlb-
HbIX KOeOAHUAX YNPOWeHHOU daacmuynol mooenu benxa. Pezynb-
mampl. Ycmanosieno, umo Oounamuieckue OOMeHbl, HAllOeHHble
memooom HDWA, xopowo coomeemcmeyrom domeHam, onpeoe-
nenuvim memoodom HCCP u ¢ npumenenuem Opyzux nooxo0os. B mo
oce epemss HDWA npasunvro onpedensiem nooGudiCHbie nemiu 6
benkax, yeco mpyoHo 0ocmuub opyeum cnocobom. Beieoowt. Iloxa-
3ano, umo HDWA sensiemcss MOWHbIM MemMOOOM AHAIUZA MPAEK-
Moputl MOAEKYAAPHOU OUHAMUKY O MHO2000MEHHbIX DENKO8.

Knrouegvlie crnosa: ounamuyeckue 0oMeHbl, U0eHmugurayus 0o-
menos, HDWA, monexynapuas ouHamuxa.
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