Structural analysis of possible target-sites of RAG1/2 protein, discovered in mouse genome in silico, and their identification in repeating elements
DOI:
https://doi.org/10.7124/bc.000798Keywords:
cRSS, V(D)J-recombination, RAG1, RAG2Abstract
We have established that the quantity of possible target-sites of RAG1/2 (cRSS) is 5.4 times higher than theoretically expected one using mathematical methods and specially developed algorithms. 71% of cases revealed cRSS in the structure of 390 types of repeats. The structure of 5% motives includes nucleotides, typical for the majority of signal sequences of recombination of functional V, D, J segments of Ig, Tcr mouse genes (fRSS). The existence of 25 % of such motives in mouse DNA may be considered as the consequence of random nucleotide combinations. In the majority of cases the structures of spacers 12cRSS and 23cRSS are 58–67 % and 30–47 % homologous to spacers 12fRSS and 23fRSS respectively.References
Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575-81.
Tonegawa S, Brack C, Hozumi N, Pirrotta V. Organization of immunoglobulin genes. Cold Spring Harb Symp Quant Biol. 1978;42 Pt 2:921-31.
Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248(4962):1517-23.
Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR. Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. Science. 1990;250(4986):1426-9.
Tsuji H, Ishii-Ohba H, Katsube T, Ukai H, Aizawa S, Doi M, Hioki K, Ogiu T. Involvement of illegitimate V(D)J recombination or microhomology-mediated nonhomologous end-joining in the formation of intragenic deletions of the Notch1 gene in mouse thymic lymphomas. Cancer Res. 2004;64(24):8882-90.
Scheerer JB, Xi L, Knapp GW, Setzer RW, Bigbee WL, Fuscoe JC. Quantification of illegitimate V(D)J recombinase-mediated mutations in lymphocytes of newborns and adults. Mutat Res. 1999;431(2):291-303.
Gubskiy AY. Structural analysis of recombination signal sequences of the three types of V-, D-, J-gene segments of immunoglobulin and T-cell receptors person. Odessa. Med. Zh. 2005; 5:10-12.
Matsuda F, Ishii K, Bourvagnet P, Kuma Ki, Hayashida H, Miyata T, Honjo T. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med. 1998;188(11):2151-62.
Lewis SM, Agard E, Suh S, Czyzyk L. Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol. 1997;17(6):3125-36.
Cowell LG, Davila M, Yang K, Kepler TB, Kelsoe G. Prospective estimation of recombination signal efficiency and identification of functional cryptic signals in the genome by statistical modeling. J Exp Med. 2003;197(2):207-20.
Gubskiy AY, Zynkovskyy VG. Finding and identifying areas of localization in the mouse genome sequence cRSS, whose structure suggests a high recombination potential. Odessa Med zhurn. 2006;98(6):11-14.
Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983;11(8):2237-55.
Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000;16(1):16-23.
Harr R, Haggstrom M, Gustafsson P. Search algorithm for pattern match analysis of nucleic acid sequences. Nucleic Acids Res. 1983;11(9):2943-57.
Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.
Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000;16(9):418-20.
Fanning L, Connor A, Baetz K, Ramsden D, Wu GE. Mouse RSS spacer sequences affect the rate of V(D)J recombination. Immunogenetics. 1996;44(2):146-50.
Akamatsu Y, Tsurushita N, Nagawa F, Matsuoka M, Okazaki K, Imai M, Sakano H. Essential residues in V(D)J recombination signals. J Immunol. 1994;153(10):4520-9.