
206

© Publisher PH "Akademperiodyka" of the NAS of Ukraine, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited

http://dx.doi.org/10.7124/bc.000AF0

Evaluation of performance of the same analysis
in different programming languages
I.-A. Ripan1, K. Brzezinska2, Ye. Makedon3

1 Stefan cel Mare University of Suceava
13, University Str., Suceava, Romania, 720229

2 FH Campus Wien, Austria
226, Favoritenstrasse, Vienna, Austria, 1100

3 Constructor University Bremen gGmbH
1, Campus Ring, Bremen, Germany, 28759
mail@kbrzezinska.com

Aim. This study evaluates the performance of the
Needleman-Wunsch algorithm across Python, C++, and
C#, focusing on execution time and memory usage. The
algorithm, based on dynamic programming with a time
complexity of O(mn), ensures optimal global sequence
alignment, making it essential in bioinformatics. An exis-
ting repository was used for implementation, and despite
its age, the core logic remains valid for performance
comparison. While newer algorithms like Smith-Waterman
and BLAST offer different advantages, Needleman-
Wunsch is still the gold standard for global alignments due
to its simplicity and accuracy. Methods. In this study, the
algorithm was implemented in Python, C++, and C#.
Execution time and memory usage were measured for
small and large data sets using standardized tools for con-
sistency. Validation used sequences CTCGCAGC and
CATTCAC, with scoring criteria of 10 points for a match,
–2 for a mismatch, and –5 for a gap. All implementations
yielded the aligned sequences CAT-TCA-C and
C-TCGCAGC. Testing included *E.coli* reference and
randomly mutated sequences, extracting 1000 nucleotides
from the first codon of both fasta files. The algorithm was
applied 10 times to measure peak memory and execution

time, with scalability evaluated on 10,000 nucleotide
samples. Two implementations for each language ensured
independent assessment of memory management and
execution time, validating the algorithm’s theoretical com-
plexity and analyzing operational overhead. Results. The
results showed varying performance characteristics among
the languages. C++ had the fastest execution and lowest
memory usage, proving most efficient for large-scale
analysis. C# performed well in speed but had higher
memory consumption. Python, though easier to use and
faster to develop in, had significantly higher execution
times and memory usage. These results were expected,
given that C++ is compiled and Python is interpreted. The
complexity difference led to significant disparities in me-
mo ry and time performance, especially as sample sizes
increased. Conclusions. This study highlights the trade-
offs between ease of use, speed, and resource consumption.
C++ is ideal for performance-critical applications, while
Python offers accessibility for rapid development despite
higher resource needs.
K e y w o r d s: Performance evaluation, Needleman-
Wunsch algorithm, Python, C++, C#.

Section 5: Computational biology and AI in biomedical research

ISSN 1993-6842 (on-line); ISSN 0233-7657 (print)
169—244

