

Генноинженерная биотехнология

УДК 577.2:575

Г. Д. Телегеев, И. В. Зозуля, С. С. Малюта

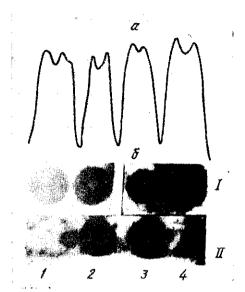
ЭКСЦИЗИЯ ПОВТОРЯЮЩИХСЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ЯДЕРНОГО ГЕНОМА КЛЕТОК HeLa КАК ВОЗМОЖНЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ МИНИКОЛЬЦЕВЫХ ДНК

С помощью проклонированных молекул миникольцевых ДНК (мкДНК) изучали копийность этих структур в геноме клеток HeLa. Показано, что оба мк-зонда имеют гомологию к хромосомной ДНК и представлены в ней множеством копий (800—900). Обработка культуры циклогексимидом, а также старение клеток in vitro приводят к 0,2—2-кратному уменьшению копийности исследуемых мКДНК в геноме с одновременным увеличением их содержания в экстрахромосомной фракции. Наиболее вероятным механизмом для объяскения этого процесса является рекомбинация повторов с последующей их эксцизией в кольцевой форме.

Введение. Клетки животных паряду с ядерной и митохондриальной ДПК содержат полидисперсные мкДНК [1—3], имеющие размер от нескольких сотен до десятков тысяч пар оснований и представленные в клетках единичными или множественными копиями. Все исследованные до настоящего времени мкДНК гомологичны хромосомной ДНК и гибридизуются преимущественно с повторами разных классов [4—6]. Показано, что число копий мкДНК может меняться в процессе развития [7], при старении [1], у межвидовых гибридов [9], в результате трансформации [8], после обработки циклогексимидом (ЦГИ) [1—3] и т. д. Природа подобных изменений пока не известна.

В данной работе, используя проклонированные мкДНК из клеток HeLa [13], предпринята попытка выяснить возможные механизмы количественных изменений мкДНК в этих клетках в процессе старения и при блоке ЦГП.

Материалы и методы. Перевиваемую культуру клеток HeLa выращивали на питательной смеси, содержащей среду Игла с глютамином, среду 199 и сыворотку крупного рогатого скота в соотношениях 1:2:1. В среду добавляли по 100 ед/мл пенициклина и стрептомицина.


Высокомолекулярную ДНК выделяли из ядер HeLa с протеиназой K [10]. Клетки обрабатывали ЦГИ в концентрации 50 мкг в 1 мл культуральной среды за 16 ч до выделения ДНК. Дот-гибридизацию проводили на нитроцеллюлозном фильтре Hybond по общепринятой методике [41]. В качестве молекулярных зондов использовали меченые 32 P с помощью ник-трансляции [12] мкДНК, получениые из культуры клеток HeLa и клонированные в HindIH-сайт плазмиды pBR322 [13]. Результаты авторадиографии обрабатывали на приборе Ultroscan XL фирмы «LKB» (Швеция).

Результаты и обсуждение. Равное количество хромосомной ДПК, выделенной из обработанных и не обработанных ЦГИ клеток HeLa, наносили на нитроцеллюлозные фильтры и гибридизовали с фрагментом клонированной мкДНК клона pMTH1 [13]. Параллельно на тот же фильтр наносили внехромосомную цитоплазматическую ДНК (рис. 1). Сигналы, полученные при гибридизации ядерной ДНК с зондом, свидетельствует о том, что мкДНК представлена в геноме клеток HeLa в виде множества копий. Сопоставление сигналов обнаруживает большую конийность клонированного фрагмента мкДНК в клетках, не обрабо-

танных ЦГИ. Копийность повторов определяли сравнением интенсивности сигналов геномной ДНК по их отношению к разведениям зондов (положительный контроль), как описано в работе [21]. По результатам денситометрии (рис. 1, a), число копий фрагмента из клона pMTH1 в ядерном геноме клеток, не обработанных ЦГИ, составило примерно

Рис. 1. Результаты дот-гибридизации ДНК клеток HeLa с 32 Р-меченной вставкой клона pMTH1 (б) и денситограмма одного из разведений (а). I— ДНК ядер клеток HeLa до (I) и после (I) обработки ЦГИ (I0,25 мкг); ДНК цитоплазмы клеток I1 (I0,25 мкг); I1 — ДНК фага I1 (I2,4 мкг), разведение зонда I3 (I3,4 мкг), I3 и после (I4) обработки ЦГИ (I6,25 мкг); I7 — ДНК фага I8 (I2,4 мкг), разведение зонда I10-2, I3, I3,4 мкг

Fig. 1. Dot-hybridization of HeLa genomic DNA with 32 P-labelled probe pMTH1 (6) and peaks of corresponding autoradiograms (a) I—genomic DNA before cycloheximide treatment, 6.25 μ g (1); genomic DNA after cycloheximide treatment, 6.25 μ g (2); cytoplasmic DNA before cycloheximide treatment, 16.25 μ g (3); cytoplasmic DNA after cycloheximide treatment, 16.25 μ g (4); II— λ , 2 μ g, probes dilution (10^{-2} , 10^{-3} , 10^{-4} μ g)

800, в то время как после обработки их количество уменьшилось на 80-100. Одновременно наблюдается увеличение числа копий в экстрахромосомной фракции клеточной ДНК (рис. $1,\,4$).

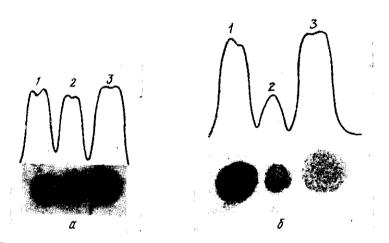


Рис. 2. Результаты дот-гибридизации ДНК ядер клеток HeLa с 32 Р-меченными мквставками клонов pMTH1 (a) и pMTH9 (б): I — ДНК клеток в стадии экспоненциального роста, 2,5 мкг; 2 — то же в поздней стационарной фазе роста, 2,5 мкг; 3 — ДНК зоида, 10^{-3} мкг

Fig. 2. Dot-hybridization of HeLa genomic DNA of different growth state with ^{32}P -labelled probes pMTH1 (a), pMTH9 (b): I — DNA from cells in exponential phase; 2.5 μ g; 2 — DNA from cells in late stationary phase, 2.5 μ g; 3 — probe ($10^{-3}~\mu$ g)

Изменения количества копий мкДНК в геноме, аналогичные описанным выше, получены и при гибридизации с фрагментом клонированной мкДНК клона рМТН9. Число копий в этом случае изменилось примерно на 300, составляя 900 копий в необработанных и около 600 в клетках, обработанных ЦГИ.

Для изучения влияния старения на копийность мкДНК в геноме образцы ядерной ДПК, выделенные из культуры клеток в стадии экспоненциального роста, а также из клеток поздней стационарной фазы (обычно 6-8-е сут роста), наносили на фильтры и гвбридизовали с мкзондами (рис. 2). Данные денситограмм свидетельствуют о различной степени изменения мкДНК в геномной ДНК при старении для клонов pMTH1 и pMTH9. Так, уменьшение копий мкДНК для клона pMTH1 в геноме составляло 160-180, в то время как для клона pMTH9 эта величина была порядка 450—500 копий.

Таким образом, представленные здесь данные свидетельствуют о следующем. Во-первых, число копий клонов рМТИИ и рМТИ9 в геноме $8 \cdot 10^2$ и $9 \cdot 10^2$ позволяет считать их умеренно повторяющимися последовательностями генома человека. Во-вторых, обработка культуры клеток HeLa ЦГИ и старение клеток приводят к уменьшению копийности мкДНК в геноме. Наиболее вероятным механизмом для объяснения данного процесса, по нашему мнению, является рекомбинация повторов между собой и их последующая эксцизия в кольцевой форме, возможно, аналогично описанному для L-1, Sau-3A последовательностей [14, 15]. В то же время трудно объяснить изменение копийности данных мкДИК процессом обратной транскрипции, описанным для Alu-повторов [16], а также механизмом по типу «чешуи луковицы» [17].

В настоящее время опубликовано лишь несколько работ, в которых установлена «запрограммированность» процесса эксцизии с последующим образованием кольцевых молекул (созревание а-, β- и σ-генов рецепторов Т-клеток) [18-20]. Насколько широко распространено это явление и свидетельствует ли опо о выживании или о гибели клеток, пока не ясно.

EXCISION OF HeLa GENOMIC REPEATED SEQUENCES AS A POSSIBLE WAY TO PRODUCE MINICIRCULAR DNA

G. D. Telegeev, I. V. Zozulia, S. S. Maliuta Institute of Molecular Biology and Genetics, Academy of Sciences of the USSR, Kiev

Summary

Using cloned minicircular DNA(mcDNA) of HeLa cells a number of its genomic copies has been studied. It is found that both probes have chromosome homology and are presented at least by 800-900 copies. The cycloheximide treatment and «ageing» in vitro results in a 0.2-2-fold decrease of its genomic copies with simultaneous increase in cytoplasmic fraction. It is explained by means of recombination and excision of repeats in the circular form.

СПИСОК ЛИТЕРАТУРЫ

- Smith Ch., Vinograd I. A small polydisperse circular DNA of HeLa cells /, J. Mol. Biol.—1972.—69, N 2.—P. 163—178.
 Stanfield Sh., Helinski D. R. Small circular DNA in Drosophila melanogaster // Cell.—1976.—9, N 2.—P. 333—345.
 Molecular cloning and characterization of small polydisperse circular DNA from mouse 376 cells / P. Supperhagen P. M. Sigherg A. L. Kalsson et al. //Nucl. Acids.
- use 376 cells / P. Sunnerhagen, R. M. Sjöberg, A. L. Kalsson et al. // Nucl. Acids Res.—1986.—14, N 20.—P. 7823—7838.
- 4. Stanfield Sh., Helinski D. R. Cloning and characterization of small circular DNA from Chinese hamster ovary cells // Mol. and Cell. Biol.—1984.—4, N 1.—P. 173— 180.
- 5. Kunisada T., Yamagishi H. Sequence repetition and genomic distribution of small polydisperse circular DNA purified from HeLa cells // Gene. — 1984. — 31, N 1-3. —
- 6. Riabowol K., Shmookler R. R., Goldstein S. Interspersed repetitive and tandemly repetitive sequences are differentially represented in extrachromosomal covalently closed circular DNA of human diploid fibroblasts // Nucl. Acids Res.— 1985.—13, N 15.— P. 5563—5584.

- Delap R. J., Rush M. G. Change in quantity and size distribution of small circular DNAs during development of chicken bursa // Proc. Nat. Acad. Sci. USA.—1978.—75, N 12.—P. 5855—5859.
 Weiberg F. C., Sunnerhagen P., Bjursell G. New, small circular DNA in transfected mammalian cells // Mol. and Cell. Biol.—1986.—6, N 2.—P. 653—662.
 Extrachromosomal circular DNAs in interspecific mouse-rat reconstituted cells /
- H. Yamagishi, T. Kunisada, M. Tosu, S. Toyozo // Gann. Jap. J. Cancer Res.— 1984.—75, N. 1.—P. 36—42.
- 10. Bell G. I., Karam J. H., Rutter W. J. Polymorphic DNA region adjacent to the 5' end of the human insuline gene // Proc. Nat. Acad. Sci. USA.—4981.—78, N. 9.— P. 5759- 5763.
- Kajutos F. C., Jones C. W., Ejstradiatis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure // Nucl. Acids Res.-- 1979.—7, N 6.—P. 1541—1552.
- 12. Labelling DNA to high specific in vitro by nick-translation with DNA polymerase I/P. Rigby, M. Dieckmann, C. Rhodes, P. Berg//J. Mol. Biol.—1977.—113, N. 1.— P. 237 - 251.
- 13. Telegeev G. D., Maliuta S. S. HeLa minicircular DNA cloning in Escherichia coli cells and analysis of recombinant clones obtained // Proc. 4th Soviet-Italian Symp.-Pushchino, 1986.— P. 65—68.
- 14. Kiyama R., Okumura K., Matsui H. Nature of recombination involved in excision and rearrangement of human repetitive DNA // J. Mol. Biol. 1987. 198, N 4. P. 589-598.
- 15. Jones R., Potter S. L1 sequences in HeLa extrachromosomal circular DNA: evidence for circularization by homologous recombination // Proc. Nat. Acad. Sci. USA .--0.985.—82, N. 7.— P. 1989—1993.
- 16. Krolewski J. J., Rush. M. G. Some extrachromosomal circular DNAs containing the Alu family of dispersed repetitive sequences may by reverse transcripts $//J_c^2$ Mol. Biol.-- 1984.--174, N 1.-- P. 31-40.
- Biol.-- 1984.—174, N. 1.— P. 31—40.
 17. Varshavsky A. On the possibility of metabolic control of replicon «misfiring». Relationship to emergence of malignant phenotypes in mammalian cell lineages // Proc. Nat. Acad. Sci. USA.—1981.—78, N. 6.— P. 3673—3677.
 18. Fujimoto Sh., Yamagishi H. Isolation of an excision product of T-cell receptor α-chain gene rearrangements // Nature.—1987.—327, N. 6119.— P. 242—244.
 19. Okazaki K., Sakano H. Thymocyte circular DNA excised from T cell receptor α-β-gene complex // EMBO J.—1988.—7, N. 6.— P. 1669—1674.
 20. Okazaki K., Davis D. D., Sakano N. T cell receptor β-gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J.

- 20. Оказана К., Вибъ В. В., Sakano К. Г сен гесерют p-gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining // Celf. 1987. 49. № 4. Р. 477—485.
 21. Иванов П. Л., Акуличев А. В., Рысков А. П. Экспрессия повторяющихся последовательностей генома в клетках мозга крысы: клонярование и характеристика кДПК-копли транскрипта элемента LI // Генетика. 1987. 23. № 8.— С. 1349—1250. 1359.

Ин-т молекуляр, биологии и генетики AH NCCP, Kneb

Получено 08.06.89